Can LLMs Find Fraudsters? Multi-level LLM Enhanced Graph Fraud Detection
- URL: http://arxiv.org/abs/2507.11997v1
- Date: Wed, 16 Jul 2025 07:50:43 GMT
- Title: Can LLMs Find Fraudsters? Multi-level LLM Enhanced Graph Fraud Detection
- Authors: Tairan Huang, Yili Wang,
- Abstract summary: We propose a textbfMulti-level textbfLLM textbfEnhanced Graph Fraud textbfDetection framework called MLED.
- Score: 1.3801049069666116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph fraud detection has garnered significant attention as Graph Neural Networks (GNNs) have proven effective in modeling complex relationships within multimodal data. However, existing graph fraud detection methods typically use preprocessed node embeddings and predefined graph structures to reveal fraudsters, which ignore the rich semantic cues contained in raw textual information. Although Large Language Models (LLMs) exhibit powerful capabilities in processing textual information, it remains a significant challenge to perform multimodal fusion of processed textual embeddings with graph structures. In this paper, we propose a \textbf{M}ulti-level \textbf{L}LM \textbf{E}nhanced Graph Fraud \textbf{D}etection framework called MLED. In MLED, we utilize LLMs to extract external knowledge from textual information to enhance graph fraud detection methods. To integrate LLMs with graph structure information and enhance the ability to distinguish fraudsters, we design a multi-level LLM enhanced framework including type-level enhancer and relation-level enhancer. One is to enhance the difference between the fraudsters and the benign entities, the other is to enhance the importance of the fraudsters in different relations. The experiments on four real-world datasets show that MLED achieves state-of-the-art performance in graph fraud detection as a generalized framework that can be applied to existing methods.
Related papers
- DGP: A Dual-Granularity Prompting Framework for Fraud Detection with Graph-Enhanced LLMs [55.13817504780764]
Real-world fraud detection applications benefit from graph learning techniques that jointly exploit node features, often rich in textual data, and graph structural information.<n>Graph-Enhanced LLMs emerge as a promising graph learning approach that converts graph information into prompts.<n>We propose Dual Granularity Prompting (DGP), which mitigates information overload by preserving fine-grained textual details for the target node.
arXiv Detail & Related papers (2025-07-29T10:10:47Z) - Quantizing Text-attributed Graphs for Semantic-Structural Integration [6.721504414917793]
Text-attributed graphs (TAGs) have emerged as a powerful representation for modeling complex relationships across diverse domains.<n>With the rise of large language models (LLMs), there is growing interest in leveraging their capabilities for graph learning.<n>We propose STAG, a novel self-supervised framework that directly quantizes graph structural information into discrete tokens using a frozen codebook.
arXiv Detail & Related papers (2025-07-20T09:18:02Z) - Democratizing Large Language Model-Based Graph Data Augmentation via Latent Knowledge Graphs [22.218522445858344]
Data augmentation is necessary for graph representation learning due to the scarcity and noise present in graph data.<n>We propose a black-box context-driven graph data augmentation approach, with the guidance of LLMs -- DemoGraph.<n>Our approach excels in scenarios involving electronic health records (EHRs), which validates its maximal utilization of contextual knowledge.
arXiv Detail & Related papers (2025-02-19T09:00:32Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
We introduce an end-to-end modality-aligning framework for LLM-graph alignment: Dual-Residual Vector Quantized-Variational AutoEncoder, namely Dr.E.<n>Our approach is purposefully designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic'of graphs into comprehensible natural language.<n>Our framework ensures certain visual interpretability, efficiency, and robustness, marking the promising successful endeavor to achieve token-level alignment between LLMs and GNNs.
arXiv Detail & Related papers (2024-06-19T16:43:56Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Can we Soft Prompt LLMs for Graph Learning Tasks? [22.286189757942054]
GraphPrompter is a framework designed to align graph information with Large Language Models (LLMs) via soft prompts.
The framework unveils the substantial capabilities of LLMs as predictors in graph-related tasks.
arXiv Detail & Related papers (2024-02-15T23:09:42Z) - Which Modality should I use -- Text, Motif, or Image? : Understanding Graphs with Large Language Models [14.251972223585765]
This paper introduces a new approach to encoding a graph with diverse modalities, such as text, image, and motif, and prompts to approximate a graph's global connectivity.
The study also presents GraphTMI, a novel benchmark for evaluating Large Language Models (LLMs) in graph structure analysis.
arXiv Detail & Related papers (2023-11-16T12:45:41Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.