論文の概要: MVAR: MultiVariate AutoRegressive Air Pollutants Forecasting Model
- arxiv url: http://arxiv.org/abs/2507.12023v1
- Date: Wed, 16 Jul 2025 08:30:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.306494
- Title: MVAR: MultiVariate AutoRegressive Air Pollutants Forecasting Model
- Title(参考訳): MVAR:多変量自動回帰空気汚染予測モデル
- Authors: Xu Fan, Zhihao Wang, Yuetan Lin, Yan Zhang, Yang Xiang, Hao Li,
- Abstract要約: 既存の研究は主に単一汚染物質予測に焦点を合わせ、異なる汚染物質間の相互作用と様々な空間応答を無視している。
本稿では, 長期風速入力への依存性を低減させる多変量自動回帰空気汚染予測モデルを提案する。
我々は2018年から2023年まで、中国北75都市6大汚染物質を包括的データセットを構築し、ERA5の再分析データとFuXi-2.0予測データを含む。
- 参考スコア(独自算出の注目度): 18.785110680719235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air pollutants pose a significant threat to the environment and human health, thus forecasting accurate pollutant concentrations is essential for pollution warnings and policy-making. Existing studies predominantly focus on single-pollutant forecasting, neglecting the interactions among different pollutants and their diverse spatial responses. To address the practical needs of forecasting multivariate air pollutants, we propose MultiVariate AutoRegressive air pollutants forecasting model (MVAR), which reduces the dependency on long-time-window inputs and boosts the data utilization efficiency. We also design the Multivariate Autoregressive Training Paradigm, enabling MVAR to achieve 120-hour long-term sequential forecasting. Additionally, MVAR develops Meteorological Coupled Spatial Transformer block, enabling the flexible coupling of AI-based meteorological forecasts while learning the interactions among pollutants and their diverse spatial responses. As for the lack of standardized datasets in air pollutants forecasting, we construct a comprehensive dataset covering 6 major pollutants across 75 cities in North China from 2018 to 2023, including ERA5 reanalysis data and FuXi-2.0 forecast data. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods and validate the effectiveness of the proposed architecture.
- Abstract(参考訳): 大気汚染物質は環境と人間の健康に重大な脅威を与えるため、汚染警告や政策立案には正確な汚染物質濃度の予測が不可欠である。
既存の研究は主に単一汚染物質予測に焦点を合わせ、異なる汚染物質間の相互作用と様々な空間応答を無視している。
本研究では,多変量大気汚染物質予測モデル (MVAR) を提案する。
また,多変量自己回帰訓練パラダイムを設計し,MVARが120時間連続予測を行えるようにした。
さらに、MVARは気象結合型空間変換器ブロックを開発し、汚染物質間の相互作用と多様な空間応答を学習しながら、AIベースの気象予測の柔軟な結合を可能にする。
大気汚染物質予測における標準化されたデータセットの欠如について、2018年から2023年までの北中国75都市における6つの主要な汚染物質に関する包括的なデータセットを構築し、ERA5の再分析データとFuXi-2.0予測データを含む。
実験により,提案手法は最先端の手法より優れ,提案手法の有効性が検証された。
関連論文リスト
- FuXi-Air: Urban Air Quality Forecasting Based on Emission-Meteorology-Pollutant multimodal Machine Learning [22.270124698874934]
高精度な空気質予測を支援するために,マルチモーダルデータ融合に基づく空気質予測モデルFuXi-Airを構築した。
このモデルでは、主要な大気汚染物質6種の72時間の予測を、25~30秒以内に複数の監視地点で時間分解能で完了させることに成功した。
論文 参考訳(メタデータ) (2025-06-09T10:27:50Z) - Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network [47.699409089023696]
大気質の予測は公衆衛生と環境保護において重要な役割を担っている。
既存の研究は大気の質予測において重要な役割を過小評価している。
MDSTNetは、予測のための大気汚染依存性を明示的にキャプチャするエンコーダフレームワークである。
ChinaAirNetは、大気の質記録と多気圧レベルの気象観測を組み合わせた最初のデータセットである。
論文 参考訳(メタデータ) (2025-04-14T09:18:11Z) - Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling [5.236306661644172]
伝統的な物理学に基づくモデルでは、気象学と大気汚染プロセスの結合によって地球規模の大気汚染を予測する。
既存のディープラーニング(DL)ソリューションでは,グローバル大気汚染予測にオンライン結合戦略を採用している。
本研究は,気象分野と汚染物質間のオフライン結合を実現するために,双線形プールを用いたDLベースのオフライン結合フレームワークを開拓した。
論文 参考訳(メタデータ) (2025-03-24T07:24:31Z) - A HEART for the environment: Transformer-Based Spatiotemporal Modeling for Air Quality Prediction [0.0]
ルル環境は高度でスケーラブルな大気汚染予測システムである。
エンコーダとデコーダの畳み込みニューラルネットワークを含み、4つの主要な汚染物質の平均汚染レベルを予測する。
本稿では,予測精度を向上させるための注意機構を備えたニューラルネットワークの強化について検討する。
論文 参考訳(メタデータ) (2025-02-26T10:54:27Z) - AirCast: Improving Air Pollution Forecasting Through Multi-Variable Data Alignment [46.56288727659417]
大気汚染は、急速な工業化と都市化によって悪化する世界的な健康リスクの先駆けである。
本稿では,新しい多変量大気汚染予測モデルであるAirCastを紹介する。
AirCastは、大気条件と汚染物質濃度を同時に予測するマルチタスクヘッドアーキテクチャを採用している。
論文 参考訳(メタデータ) (2025-02-25T07:34:18Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Variable importance measure for spatial machine learning models with application to air pollution exposure prediction [2.633085745593072]
本研究の目的は, 大気汚染の健康影響を学習する能力を最大限に活用するために, データのない場所での被験者の大気汚染の予測を行うことである。
これらの課題を、米国国家PM2.5亜種規制データの硫黄(S)と、シアトルの交通関連大気汚染データセットの超微粒子(UFP)の2つのデータセットで解決する。
私たちの重要な貢献は、幅広いモデルの解釈可能かつ同等の尺度に導かれる、変数の重要度に対する一対一のアプローチである。
論文 参考訳(メタデータ) (2024-06-04T05:51:36Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。