論文の概要: Advances in Machine Learning: Where Can Quantum Techniques Help?
- arxiv url: http://arxiv.org/abs/2507.08379v1
- Date: Fri, 11 Jul 2025 07:47:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.282484
- Title: Advances in Machine Learning: Where Can Quantum Techniques Help?
- Title(参考訳): 機械学習の進歩:量子技術はどんな助けになるのか?
- Authors: Samarth Kashyap, Rohit K Ramakrishnan, Kumari Jyoti, Apoorva D Patel,
- Abstract要約: 量子機械学習(QML)は、量子コンピューティングと人工知能の交差点における有望なフロンティアである。
本稿では,従来の機械学習の計算ボトルネックに対処するQMLの可能性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum Machine Learning (QML) represents a promising frontier at the intersection of quantum computing and artificial intelligence, aiming to leverage quantum computational advantages to enhance data-driven tasks. This review explores the potential of QML to address the computational bottlenecks of classical machine learning, particularly in processing complex datasets. We introduce the theoretical foundations of QML, including quantum data encoding, quantum learning theory and optimization techniques, while categorizing QML approaches based on data type and computational architecture. It is well-established that quantum computational advantages are problem-dependent, and so potentially useful directions for QML need to be systematically identified. Key developments, such as Quantum Principal Component Analysis, quantum-enhanced sensing and applications in material science, are critically evaluated for their theoretical speed-ups and practical limitations. The challenges posed by Noisy Intermediate-Scale Quantum (NISQ) devices, including hardware noise, scalability constraints and data encoding overheads, are discussed in detail. We also outline future directions, emphasizing the need for quantum-native algorithms, improved error correction, and realistic benchmarks to bridge the gap between theoretical promise and practical deployment. This comprehensive analysis underscores that while QML has significant potential for specific applications such as quantum chemistry and sensing, its broader utility in real-world scenarios remains contingent on overcoming technological and methodological hurdles.
- Abstract(参考訳): 量子機械学習(QML)は、量子コンピューティングと人工知能の交差点における有望なフロンティアであり、量子計算の利点を活用してデータ駆動タスクを強化することを目指している。
本稿では,従来の機械学習,特に複雑なデータセット処理における計算ボトルネックに対処するQMLの可能性について検討する。
データ型と計算アーキテクチャに基づいたQMLアプローチを分類しながら、量子データ符号化、量子学習理論、最適化技術を含むQMLの理論的基礎を紹介する。
量子計算の優位性は問題に依存しており、QMLにとって潜在的に有用な方向を体系的に同定する必要があることは確実である。
量子主成分分析(Quantum principal Component Analysis)、量子強化センシング(quantum-enhanced Sensor)、物質科学への応用などの重要な発展は、理論的なスピードアップと実用的限界によって批判的に評価されている。
ハードウェアノイズやスケーラビリティの制約,データエンコーディングオーバーヘッドなど,NISQ(Noisy Intermediate-Scale Quantum)デバイスがもたらす課題について,詳しく論じる。
また、将来的な方向性を概説し、量子ネイティブアルゴリズムの必要性を強調し、エラー修正を改善し、理論的な約束と実践的なデプロイメントのギャップを埋めるための現実的なベンチマークも行います。
この包括的分析は、QMLは量子化学やセンシングのような特定の応用に有意な可能性を秘めているが、現実のシナリオにおけるより広範な実用性は、技術的なハードルと方法論的ハードルを克服する上で重要なものであることを示している。
関連論文リスト
- Benchmarking fault-tolerant quantum computing hardware via QLOPS [2.0464713282534848]
量子アルゴリズムを実行するためには、低ノイズレベルでスケーラブルな量子ハードウェアを開発することが不可欠である。
様々なハードウェアプラットフォーム向けに、フォールトトレラントな量子コンピューティングスキームが開発されている。
本稿では,FTQC方式の性能評価指標として,QLOPS(Quantum Logical Operations Per Second)を提案する。
論文 参考訳(メタデータ) (2025-07-16T08:31:51Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
量子機械学習(Quantum Machine Learning)は、量子コンピューティングと機械学習の交差点におけるパラダイムシフトである。
この分野は、ハードウェアの制約、ノイズ、量子ビットコヒーレンス(英語版)の制限など、重大な課題に直面している。
この調査は、実用的な実世界のアプリケーションに向けて量子機械学習を進めるための基盤となるリソースを提供することを目的としている。
論文 参考訳(メタデータ) (2025-01-16T13:25:49Z) - Learning to Measure Quantum Neural Networks [10.617463958884528]
本稿では,量子系の可観測性,特にエルミート行列学習性を実現する新しい手法を提案する。
本手法では,パラメータ化可観測関数を通常の量子回路パラメータとともに学習するエンド・ツー・エンドの微分可能学習フレームワークを特徴とする。
数値シミュレーションにより,提案手法は変動量子回路の観測値の同定が可能であり,その結果が得られた。
論文 参考訳(メタデータ) (2025-01-10T02:28:19Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
量子機械学習は、環境モニタリング、医療診断、金融モデリングといった様々な応用において有望であることを示している。
重要な課題のひとつは、希少なイベントがスキューデータ分散によって誤って分類される、不均衡なデータセットを扱うことだ。
本稿では,QBNを用いて衛星由来の不均衡データセットを分類し,非スパイル領域とオイルスパイル'を区別するベイズ的手法を提案する。
論文 参考訳(メタデータ) (2024-12-24T15:44:26Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
量子機械学習(QML)は、特に量子データに対して、データ分析を加速する可能性がある。
ここでは、QMLの現在の方法と応用について概観する。
量子ニューラルネットワークと量子ディープラーニングに焦点をあてて、量子と古典的な機械学習の違いを強調します。
論文 参考訳(メタデータ) (2023-03-16T17:10:39Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。