Intra-view and Inter-view Correlation Guided Multi-view Novel Class Discovery
- URL: http://arxiv.org/abs/2507.12029v1
- Date: Wed, 16 Jul 2025 08:42:52 GMT
- Title: Intra-view and Inter-view Correlation Guided Multi-view Novel Class Discovery
- Authors: Xinhang Wan, Jiyuan Liu, Qian Qu, Suyuan Liu, Chuyu Zhang, Fangdi Wang, Xinwang Liu, En Zhu, Kunlun He,
- Abstract summary: Novel class discovery (NCD) aims to cluster novel classes by leveraging knowledge from disjoint known classes.<n>We propose a novel framework named Intra-view and Inter-view Correlation Guided Multi-view Novel Class Discovery (IICMVNCD)<n>IICMVNCD is the first attempt to explore NCD in multi-view setting so far.
- Score: 52.616615506638205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the problem of novel class discovery (NCD), which aims to cluster novel classes by leveraging knowledge from disjoint known classes. While recent advances have made significant progress in this area, existing NCD methods face two major limitations. First, they primarily focus on single-view data (e.g., images), overlooking the increasingly common multi-view data, such as multi-omics datasets used in disease diagnosis. Second, their reliance on pseudo-labels to supervise novel class clustering often results in unstable performance, as pseudo-label quality is highly sensitive to factors such as data noise and feature dimensionality. To address these challenges, we propose a novel framework named Intra-view and Inter-view Correlation Guided Multi-view Novel Class Discovery (IICMVNCD), which is the first attempt to explore NCD in multi-view setting so far. Specifically, at the intra-view level, leveraging the distributional similarity between known and novel classes, we employ matrix factorization to decompose features into view-specific shared base matrices and factor matrices. The base matrices capture distributional consistency among the two datasets, while the factor matrices model pairwise relationships between samples. At the inter-view level, we utilize view relationships among known classes to guide the clustering of novel classes. This includes generating predicted labels through the weighted fusion of factor matrices and dynamically adjusting view weights of known classes based on the supervision loss, which are then transferred to novel class learning. Experimental results validate the effectiveness of our proposed approach.
Related papers
- Generalized Semantic Contrastive Learning via Embedding Side Information for Few-Shot Object Detection [52.490375806093745]
The objective of few-shot object detection (FSOD) is to detect novel objects with few training samples.<n>We introduce the side information to alleviate the negative influences derived from the feature space and sample viewpoints.<n>Our model outperforms the previous state-of-the-art methods, significantly improving the ability of FSOD in most shots/splits.
arXiv Detail & Related papers (2025-04-09T17:24:05Z) - Queryable Prototype Multiple Instance Learning with Vision-Language Models for Incremental Whole Slide Image Classification [10.667645628712542]
Whole Slide Image (WSI) classification has very significant applications in clinical pathology.<n>This paper proposes the first Vision-Language-based framework with Queryable Prototype Multiple Instance Learning (QPMIL-VL) specially designed for incremental WSI classification.
arXiv Detail & Related papers (2024-10-14T14:49:34Z) - Self Supervised Correlation-based Permutations for Multi-View Clustering [7.093692674858257]
We propose an end-to-end deep learning-based multi-view clustering framework for general data types.<n>Our approach involves generating meaningful fused representations using a novel permutation-based canonical correlation objective.
arXiv Detail & Related papers (2024-02-26T08:08:30Z) - Towards Generalized Multi-stage Clustering: Multi-view Self-distillation [10.368796552760571]
Existing multi-stage clustering methods independently learn the salient features from multiple views and then perform the clustering task.
This paper proposes a novel multi-stage deep MVC framework where multi-view self-distillation (DistilMVC) is introduced to distill dark knowledge of label distribution.
arXiv Detail & Related papers (2023-10-29T03:35:34Z) - High-dimensional multi-view clustering methods [0.0]
We will examine and compare the approaches, particularly in two categories, namely graph-based clustering and subspace-based clustering.
We will conduct and report experiments of the main clustering methods over a benchmark datasets.
arXiv Detail & Related papers (2023-03-14T11:04:37Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
We introduce a new setting of Novel Class Discovery in Semantic (NCDSS)
It aims at segmenting unlabeled images containing new classes given prior knowledge from a labeled set of disjoint classes.
In NCDSS, we need to distinguish the objects and background, and to handle the existence of multiple classes within an image.
We propose the Entropy-based Uncertainty Modeling and Self-training (EUMS) framework to overcome noisy pseudo-labels.
arXiv Detail & Related papers (2021-12-03T13:31:59Z) - Tensor-based Intrinsic Subspace Representation Learning for Multi-view
Clustering [18.0093330816895]
We propose a novel-based Intrinsic Subspace Representation (TISRL) for multi-view clustering in this paper.
It can be seen that specific information contained in different views is fully investigated by the rank preserving decomposition.
Experimental results on nine common used real-world multi-view datasets illustrate the superiority of TISRL.
arXiv Detail & Related papers (2020-10-19T03:36:18Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.