HeurAgenix: Leveraging LLMs for Solving Complex Combinatorial Optimization Challenges
- URL: http://arxiv.org/abs/2506.15196v2
- Date: Tue, 24 Jun 2025 14:48:12 GMT
- Title: HeurAgenix: Leveraging LLMs for Solving Complex Combinatorial Optimization Challenges
- Authors: Xianliang Yang, Ling Zhang, Haolong Qian, Lei Song, Jiang Bian,
- Abstract summary: Heuristic algorithms play a vital role in solving optimization (CO) problems.<n>HeurAgenix is a two-stage hyper-heuristic framework powered by large language models (LLMs)
- Score: 10.088078143772563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heuristic algorithms play a vital role in solving combinatorial optimization (CO) problems, yet traditional designs depend heavily on manual expertise and struggle to generalize across diverse instances. We introduce \textbf{HeurAgenix}, a two-stage hyper-heuristic framework powered by large language models (LLMs) that first evolves heuristics and then selects among them automatically. In the heuristic evolution phase, HeurAgenix leverages an LLM to compare seed heuristic solutions with higher-quality solutions and extract reusable evolution strategies. During problem solving, it dynamically picks the most promising heuristic for each problem state, guided by the LLM's perception ability. For flexibility, this selector can be either a state-of-the-art LLM or a fine-tuned lightweight model with lower inference cost. To mitigate the scarcity of reliable supervision caused by CO complexity, we fine-tune the lightweight heuristic selector with a dual-reward mechanism that jointly exploits singals from selection preferences and state perception, enabling robust selection under noisy annotations. Extensive experiments on canonical benchmarks show that HeurAgenix not only outperforms existing LLM-based hyper-heuristics but also matches or exceeds specialized solvers. Code is available at https://github.com/microsoft/HeurAgenix.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - LLAMA: Multi-Feedback Smart Contract Fuzzing Framework with LLM-Guided Seed Generation [56.84049855266145]
We propose a Multi-feedback Smart Contract Fuzzing framework (LLAMA) that integrates evolutionary mutation strategies, and hybrid testing techniques.<n>LLAMA achieves 91% instruction coverage and 90% branch coverage, while detecting 132 out of 148 known vulnerabilities.<n>These results highlight LLAMA's effectiveness, adaptability, and practicality in real-world smart contract security testing scenarios.
arXiv Detail & Related papers (2025-07-16T09:46:58Z) - Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One [28.264011412168347]
Model ensemble is a useful approach in reinforcement learning (RL) for training effective agents.<n>We propose LLM-Ens, a novel approach that enhances RL model ensemble with task-specific semantic understandings.
arXiv Detail & Related papers (2025-05-21T09:35:43Z) - CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design [11.639825726501659]
Large language models (LLMs) can autonomously discover high-performings at a fraction of the traditional cost.<n>We propose a hybrid framework that combines verbal and numerical guidance.<n>Our method outperforms state-of-the-art (SOTA) baselines across various optimization tasks.
arXiv Detail & Related papers (2025-05-18T07:48:47Z) - Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning [76.10639521319382]
We propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework.<n>We show Symbolic-MoE beats strong LLMs like GPT4o-mini, as well as multi-agent approaches, with an absolute avg. gain of 8.15% over the best multi-agent baseline.
arXiv Detail & Related papers (2025-03-07T18:03:13Z) - Leveraging Large Language Models to Develop Heuristics for Emerging Optimization Problems [0.0]
Combinatorial optimization problems often rely on algorithms to generate efficient solutions.<n>Recent advances in artificial intelligence have demonstrated the potential to automate generation through evolutionary frameworks.<n>We propose the Contextual Evolution of Heuristics framework, which incorporates problem-specific descriptions to enhance in-context learning.
arXiv Detail & Related papers (2025-03-05T10:22:49Z) - Can Large Language Models Be Trusted as Evolutionary Optimizers for Network-Structured Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) have impressive capabilities in language understanding and reasoning across diverse domains.<n>In this work, we propose a systematic framework to evaluate the capacity of LLMs to engage with problem structures.<n>We develop a cost-efficient population-level optimization strategy that significantly improves efficiency compared to traditional individual-level approaches.
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - MoE$^2$: Optimizing Collaborative Inference for Edge Large Language Models [43.83407446438587]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks.<n>We introduce textitMixture-of-Edge-Experts (MoE$2$), a novel collaborative inference framework for edge LLMs.
arXiv Detail & Related papers (2025-01-16T09:36:32Z) - Monte Carlo Tree Search for Comprehensive Exploration in LLM-Based Automatic Heuristic Design [33.58608225370497]
Large Language Model (LLM)-based automatic design (AHD) methods have shown promise in generating high-quality designs without manual intervention.<n>This paper proposes to use Monte Carlo Tree Search (MCTS) for evolutionary evolution.
arXiv Detail & Related papers (2025-01-15T06:00:50Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
Decision centers on whether to use a large LLM with better performance or a smaller one with reduced costs.
We propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion.
Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.
arXiv Detail & Related papers (2024-05-03T14:38:59Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.