Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One
- URL: http://arxiv.org/abs/2505.15306v1
- Date: Wed, 21 May 2025 09:35:43 GMT
- Title: Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One
- Authors: Yiwen Song, Qianyue Hao, Qingmin Liao, Jian Yuan, Yong Li,
- Abstract summary: Model ensemble is a useful approach in reinforcement learning (RL) for training effective agents.<n>We propose LLM-Ens, a novel approach that enhances RL model ensemble with task-specific semantic understandings.
- Score: 28.264011412168347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model ensemble is a useful approach in reinforcement learning (RL) for training effective agents. Despite wide success of RL, training effective agents remains difficult due to the multitude of factors requiring careful tuning, such as algorithm selection, hyperparameter settings, and even random seed choices, all of which can significantly influence an agent's performance. Model ensemble helps overcome this challenge by combining multiple weak agents into a single, more powerful one, enhancing overall performance. However, existing ensemble methods, such as majority voting and Boltzmann addition, are designed as fixed strategies and lack a semantic understanding of specific tasks, limiting their adaptability and effectiveness. To address this, we propose LLM-Ens, a novel approach that enhances RL model ensemble with task-specific semantic understandings driven by large language models (LLMs). Given a task, we first design an LLM to categorize states in this task into distinct 'situations', incorporating high-level descriptions of the task conditions. Then, we statistically analyze the strengths and weaknesses of each individual agent to be used in the ensemble in each situation. During the inference time, LLM-Ens dynamically identifies the changing task situation and switches to the agent that performs best in the current situation, ensuring dynamic model selection in the evolving task condition. Our approach is designed to be compatible with agents trained with different random seeds, hyperparameter settings, and various RL algorithms. Extensive experiments on the Atari benchmark show that LLM-Ens significantly improves the RL model ensemble, surpassing well-known baselines by up to 20.9%. For reproducibility, our code is open-source at https://anonymous.4open.science/r/LLM4RLensemble-F7EE.
Related papers
- Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
We introduce Omni-Thinker, a unified reinforcement learning framework that enhances large language models (LLMs) performance across diverse tasks.<n>Our approach enables consistent optimization across task types and scales RL-based training to subjective domains.<n> Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging.
arXiv Detail & Related papers (2025-07-20T01:50:16Z) - How to Train a Leader: Hierarchical Reasoning in Multi-Agent LLMs [16.853362180877593]
We introduce a hierarchical multi-agent framework that trains only a single leader LLM to coordinate a team of untrained peer agents.<n>Our results highlight the effectiveness and efficiency of training a single, flexible leader for collaborative reasoning in multi-agent LLM systems.
arXiv Detail & Related papers (2025-07-11T18:34:07Z) - RLAE: Reinforcement Learning-Assisted Ensemble for LLMs [21.77261258691006]
Large language models (LLMs) can effectively combine diverse strengths of different models, offering a promising approach to enhance performance across various tasks.<n>We propose Reinforcement Learning-Assisted Ensemble for LLMs, a novel framework that reformulates ensemble through the lens of a Markov Decision Process (MDP)<n>Our approach introduces a RL agent that dynamically adjusts ensemble weights by considering both input context and intermediate generation states.
arXiv Detail & Related papers (2025-05-31T07:38:41Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks.<n>Existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs.<n>We propose a novel RL algorithm, SWEET-RL, that uses a carefully designed optimization objective to train a critic model with access to additional training-time information.<n>Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms.
arXiv Detail & Related papers (2025-03-19T17:55:08Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT (Multi-Agent LLM Training) is a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps.<n>On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - Causal Coordinated Concurrent Reinforcement Learning [8.654978787096807]
We propose a novel algorithmic framework for data sharing and coordinated exploration for the purpose of learning more data-efficient and better performing policies under a concurrent reinforcement learning setting.
Our algorithm leverages a causal inference algorithm in the form of Additive Noise Model - Mixture Model (ANM-MM) in extracting model parameters governing individual differentials via independence enforcement.
We propose a new data sharing scheme based on a similarity measure of the extracted model parameters and demonstrate superior learning speeds on a set of autoregressive, pendulum and cart-pole swing-up tasks.
arXiv Detail & Related papers (2024-01-31T17:20:28Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving.
We propose the $textitM3$ framework as a plug-in with negligible runtime overhead at test-time.
Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies.
arXiv Detail & Related papers (2023-10-12T16:06:18Z) - Generalized Hidden Parameter MDPs Transferable Model-based RL in a
Handful of Trials [13.051708608864539]
Generalized Hidden MDPs (GHP-MDPs) describe a family of MDPs where both dynamics and reward can change as a function of hidden parameters that vary across tasks.
We experimentally demonstrate state-of-the-art performance and sample-efficiency on a new challenging MuJoCo task using reward and dynamics latent spaces.
arXiv Detail & Related papers (2020-02-08T02:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.