FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale
- URL: http://arxiv.org/abs/2507.12144v2
- Date: Fri, 18 Jul 2025 08:05:51 GMT
- Title: FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale
- Authors: Boris Bonev, Thorsten Kurth, Ankur Mahesh, Mauro Bisson, Jean Kossaifi, Karthik Kashinath, Anima Anandkumar, William D. Collins, Michael S. Pritchard, Alexander Keller,
- Abstract summary: FourCastNet 3 advances global weather modeling by implementing a scalable, geometric machine learning (ML) approach to probabilistic ensemble forecasting.<n>FourCastNet 3 delivers forecasting accuracy that surpasses leading conventional ensemble models and rivals the best diffusion-based methods.<n>Its computational efficiency, medium-range probabilistic skill, spectral fidelity, and rollout stability at subseasonal timescales make it a strong candidate for improving meteorological forecasting and early warning systems through large ensemble predictions.
- Score: 91.84761739154366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: FourCastNet 3 advances global weather modeling by implementing a scalable, geometric machine learning (ML) approach to probabilistic ensemble forecasting. The approach is designed to respect spherical geometry and to accurately model the spatially correlated probabilistic nature of the problem, resulting in stable spectra and realistic dynamics across multiple scales. FourCastNet 3 delivers forecasting accuracy that surpasses leading conventional ensemble models and rivals the best diffusion-based methods, while producing forecasts 8 to 60 times faster than these approaches. In contrast to other ML approaches, FourCastNet 3 demonstrates excellent probabilistic calibration and retains realistic spectra, even at extended lead times of up to 60 days. All of these advances are realized using a purely convolutional neural network architecture tailored for spherical geometry. Scalable and efficient large-scale training on 1024 GPUs and more is enabled by a novel training paradigm for combined model- and data-parallelism, inspired by domain decomposition methods in classical numerical models. Additionally, FourCastNet 3 enables rapid inference on a single GPU, producing a 60-day global forecast at 0.25{\deg}, 6-hourly resolution in under 4 minutes. Its computational efficiency, medium-range probabilistic skill, spectral fidelity, and rollout stability at subseasonal timescales make it a strong candidate for improving meteorological forecasting and early warning systems through large ensemble predictions.
Related papers
- LaDCast: A Latent Diffusion Model for Medium-Range Ensemble Weather Forecasting [1.2277343096128712]
We introduce LaDCast, the first global latent-diffusion framework for medium-range ensemble forecasting.<n>LaDCast generates hourly ensemble forecasts entirely in a learned latent space.<n>LaDCast achieves deterministic and probabilistic skill close to that of the European Centre for Medium-Range Forecast IFS-ENS.
arXiv Detail & Related papers (2025-06-10T19:17:14Z) - RainPro-8: An Efficient Deep Learning Model to Estimate Rainfall Probabilities Over 8 Hours [4.726419619132143]
We present a deep learning model for high-resolution probabilistic precipitation forecasting over an 8-hour horizon in Europe.<n>Our model efficiently integrates multiple data sources - including radar, satellite, and physics-based numerical weather prediction (NWP) - while capturing long-range interactions.
arXiv Detail & Related papers (2025-05-15T13:22:20Z) - Sundial: A Family of Highly Capable Time Series Foundation Models [64.6322079384575]
We introduce Sundial, a family of native, flexible, and scalable time series foundation models.<n>Our models are pre-trained without specifying any prior distribution and can generate multiple probable predictions.<n>Sundial achieves state-of-the-art results on both point and probabilistic forecasting benchmarks with a just-in-time inference speed.
arXiv Detail & Related papers (2025-02-02T14:52:50Z) - GenCast: Diffusion-based ensemble forecasting for medium-range weather [10.845679586464026]
We introduce GenCast, a probabilistic weather model with greater skill and speed than the top operational medium-range weather forecast in the world.
GenCast generates an ensemble of 15-day global forecasts, at 12-hour steps and 0.25 degree latitude-longitude, for over 80 surface and atmospheric variables in 8 minutes.
It has greater skill than ENS on 97.4% of 1320 targets we evaluated, and better predicts extreme weather, tropical cyclones, and wind power production.
arXiv Detail & Related papers (2023-12-25T19:30:06Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh [3.2785715577154595]
We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead times on a 110-km global mesh.
In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables.
arXiv Detail & Related papers (2023-09-11T16:25:48Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - PRISM: Probabilistic Real-Time Inference in Spatial World Models [52.878769723544615]
PRISM is a method for real-time filtering in a probabilistic generative model of agent motion and visual perception.
The proposed solution runs at 10Hz real-time and is similarly accurate to state-of-the-art SLAM in small to medium-sized indoor environments.
arXiv Detail & Related papers (2022-12-06T13:59:06Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Sub-seasonal forecasting with a large ensemble of deep-learning weather
prediction models [6.882042556551611]
We present an ensemble prediction system using a Deep Learning Weather Prediction (DLWP) model.
This model uses convolutional neural networks (CNNs) on a cubed sphere grid to produce global forecasts.
Ensemble spread is primarily produced by randomizing the CNN training process to create a set of 32 DLWP models.
arXiv Detail & Related papers (2021-02-09T20:14:43Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.