A solid-state temporally multiplexed quantum memory array at the single-photon level
- URL: http://arxiv.org/abs/2507.12200v1
- Date: Wed, 16 Jul 2025 12:55:27 GMT
- Title: A solid-state temporally multiplexed quantum memory array at the single-photon level
- Authors: Markus Teller, Susana Plascencia, Cristina Sastre Jachimska, Samuele Grandi, Hugues de Riedmatten,
- Abstract summary: multimodality in different degrees of freedom is one of the most promising ways to increase the rate of heralded entanglement between distant quantum nodes.<n>We realize a spatially-multiplexed solid-temporal quantum memory array with ten individually controllable spin-wave memory cells featuring on-demand read-out and temporal multiplexing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exploitation of multimodality in different degrees of freedom is one of the most promising ways to increase the rate of heralded entanglement between distant quantum nodes. In this paper, we realize a spatially-multiplexed solid-state quantum memory array with ten individually controllable spin-wave memory cells featuring on-demand read-out and temporal multiplexing. By combining spatial and temporal multiplexing, we store weak coherent pulses at the single-photon level in up to 250 spatio-temporal modes, with an average signal-to-noise ratio of 10(2). We perform a thorough characterization of the whole system, including its multiplexing and demultiplexing stage. We verify that the memory array exhibits low cross-talk even at the single-photon level. The measured performance indicates readiness for storing non-classical states and promises a speed-up in entanglement distribution rates.
Related papers
- Heralded entanglement of on-demand spin-wave solid-state quantum memories for multiplexed quantum network links [0.0]
We show telecom heralded entanglement between spatially separated quantum memories with fully adjustable recall time and temporal multiplexing of 15 modes.<n>Results establish our architecture as a prime candidate for the implementation of scalable high-rate quantum network links.
arXiv Detail & Related papers (2025-01-07T20:26:06Z) - Multiplexed quantum repeaters with hot multimode alkali-noble gas memories [45.49722819849123]
We propose a non-cryogenic optical quantum memory for noble-gas nuclear spins based on the Atomic Frequency Comb protocol.
We discuss how these quantum memories can enhance rates in satellite quantum communication networks.
arXiv Detail & Related papers (2024-02-27T18:39:15Z) - Multiplexed entanglement swapping with atomic-ensemble-based quantum
memories in the single excitation regime [4.355844694698251]
Entanglement swapping between memory repeater links is critical for establishing quantum networks via quantum repeaters.
We experimentally demonstrated ES between two entangled pairs of spin-wave memories via Duan-Lukin-Cirac-Zoller scheme.
The successful probability of ES in our scheme is increased by three times, compared with that in non-multiplexed scheme.
arXiv Detail & Related papers (2023-12-31T15:15:26Z) - Cavity-enhanced and spatial-multimode spin-wave-photon quantum interface [2.802516123527007]
We set up a ring cavity that supports an array including 6 TEM00 modes and then demonstrated cavity enhanced and spatially multiplexed spin wave photon quantum interface (QI)
The average intrinsic retrieval efficiency reaches 70% at zero delay.
The storage time for the case that cross-correlation function of the multiplexed QI is beyond 2 reaches 0.6ms.
arXiv Detail & Related papers (2023-07-24T04:36:40Z) - Multimode capacity of atomic-frequency comb quantum memories [48.7576911714538]
Ensemble-based quantum memories are key to developing multiplexed quantum repeaters.
Rare-earth ion doped crystals are main candidates for highly multimode quantum memories.
AFC quantum memory provides large temporal multimode capacity.
arXiv Detail & Related papers (2022-02-24T22:07:01Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - A cold atom temporally multiplexed quantum memory with cavity-enhanced
noise suppression [0.0]
We demonstrate a temporally multiplexed quantum repeater node in a laser-cooled cloud of $87$Rb atoms.
By embedding the atomic ensemble inside a low finesse optical cavity, the additional noise generated in multi-mode operation is strongly suppressed.
The reported capability is a key element of a quantum repeater architecture based on multiplexed quantum memories.
arXiv Detail & Related papers (2020-03-18T18:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.