RegCL: Continual Adaptation of Segment Anything Model via Model Merging
- URL: http://arxiv.org/abs/2507.12297v1
- Date: Wed, 16 Jul 2025 14:51:37 GMT
- Title: RegCL: Continual Adaptation of Segment Anything Model via Model Merging
- Authors: Yuan-Chen Shu, Zhiwei Lin, Yongtao Wang,
- Abstract summary: This paper proposes RegCL, a novel non-replay continual learning framework for efficient multi-domain knowledge integration.<n>RegCL incorporates the model merging algorithm into the continual learning paradigm by merging the parameters of SAM's adaptation modules.<n> Experimental results demonstrate that RegCL achieves favorable continual learning performance across multiple downstream datasets.
- Score: 6.868344361490698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the performance limitations of the Segment Anything Model (SAM) in specific domains, existing works primarily adopt adapter-based one-step adaptation paradigms. However, some of these methods are specific developed for specific domains. If used on other domains may lead to performance degradation. This issue of catastrophic forgetting severely limits the model's scalability. To address this issue, this paper proposes RegCL, a novel non-replay continual learning (CL) framework designed for efficient multi-domain knowledge integration through model merging. Specifically, RegCL incorporates the model merging algorithm into the continual learning paradigm by merging the parameters of SAM's adaptation modules (e.g., LoRA modules) trained on different domains. The merging process is guided by weight optimization, which minimizes prediction discrepancies between the merged model and each of the domain-specific models. RegCL effectively consolidates multi-domain knowledge while maintaining parameter efficiency, i.e., the model size remains constant regardless of the number of tasks, and no historical data storage is required. Experimental results demonstrate that RegCL achieves favorable continual learning performance across multiple downstream datasets, validating its effectiveness in dynamic scenarios.
Related papers
- Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution [88.20464308588889]
We propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR.<n>This method is designed through unfolding an SR optimization function constrained by structural similarity.<n>Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption.
arXiv Detail & Related papers (2025-06-13T14:29:40Z) - Unraveling LoRA Interference: Orthogonal Subspaces for Robust Model Merging [38.12136955174922]
Fine-tuning large language models (LMs) for individual tasks yields strong performance but is expensive for deployment and storage.<n>Recent works explore model merging to combine multiple task-specific models into a single multi-task model without additional training.<n>Existing merging methods often fail for models fine-tuned with low-rank adaptation (LoRA), due to significant performance degradation.
arXiv Detail & Related papers (2025-05-28T23:28:12Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Closed-form merging of parameter-efficient modules for Federated Continual Learning [9.940242741914748]
We introduce LoRM, an alternating optimization strategy that trains one LoRA matrix at a time.<n>We apply our proposed methodology to Federated Class-Incremental Learning (FCIL)<n>Our method demonstrates state-of-the-art performance across a range of FCIL scenarios.
arXiv Detail & Related papers (2024-10-23T15:30:13Z) - Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Merging is a training-free technique that adjusts the coefficients of each parameter for effective model merging.
PCB-Merging achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models.
arXiv Detail & Related papers (2024-10-03T11:17:58Z) - Layer-wise Model Merging for Unsupervised Domain Adaptation in Segmentation Tasks [3.776249047528669]
We leverage the abundance of freely trained models to introduce a cost-free approach to model merging.
It aims to maintain the distinctiveness of the task-specific final layers while unifying the initial layers.
This approach ensures parameter consistency across all layers, essential for boosting performance.
arXiv Detail & Related papers (2024-09-24T07:19:30Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR
Prediction [4.299153274884263]
We propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM)
Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.
arXiv Detail & Related papers (2022-11-22T09:10:37Z) - SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision [54.16430358203348]
We propose a simple but effective slimmable semantic segmentation (SlimSeg) method, which can be executed at different capacities during inference.
We show that our proposed SlimSeg with various mainstream networks can produce flexible models that provide dynamic adjustment of computational cost and better performance.
arXiv Detail & Related papers (2022-07-13T14:41:05Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.