PROL : Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning
- URL: http://arxiv.org/abs/2507.12305v1
- Date: Wed, 16 Jul 2025 15:04:46 GMT
- Title: PROL : Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning
- Authors: M. Anwar Ma'sum, Mahardhika Pratama, Savitha Ramasamy, Lin Liu, Habibullah Habibullah, Ryszard Kowalczyk,
- Abstract summary: We propose a novel prompt-based method for online continual learning (OCL) that includes 4 main components.<n>Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset.
- Score: 17.230781041043823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at https://github.com/anwarmaxsum/PROL.
Related papers
- SiameseDuo++: Active Learning from Data Streams with Dual Augmented Siamese Networks [8.762175520727611]
This work proposes the SiameseDuo++ method, which uses active learning to automatically select instances for a human expert to label according to a budget.<n>Specifically, it incrementally trains two siamese neural networks which operate in synergy, augmented by generated examples.<n> Simulation experiments show that the proposed method outperforms strong baselines and state-of-the-art methods in terms of learning speed and/or performance.
arXiv Detail & Related papers (2025-04-06T20:45:25Z) - From Offline to Online Memory-Free and Task-Free Continual Learning via Fine-Grained Hypergradients [24.963242232471426]
Continual Learning (CL) aims to learn from a non-stationary data stream where the underlying distribution changes over time.<n>Online CL (onCL) remains dominated by memory-based approaches.<n>We introduce Fine-Grained Hypergradients, an online mechanism for rebalancing gradient updates during training.
arXiv Detail & Related papers (2025-02-26T02:43:54Z) - Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
Value-based reinforcement learning can learn effective policies for a wide range of multi-turn problems.<n>Current value-based RL methods have proven particularly challenging to scale to the setting of large language models.<n>We propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning problem.
arXiv Detail & Related papers (2024-11-07T21:36:52Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.<n>We name our approach Adaptive Retention & Correction (ARC)<n>ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain.
Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
arXiv Detail & Related papers (2022-12-09T13:22:27Z) - Learning to Prompt for Continual Learning [34.609384246149325]
This work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time.
Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions.
The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity.
arXiv Detail & Related papers (2021-12-16T06:17:07Z) - Class Incremental Online Streaming Learning [40.97848249237289]
We propose a novel approach for the class-incremental learning in an emphonline streaming setting to address these challenges.
The proposed approach leverages implicit and explicit dual weight regularization and experience replay.
Also, we propose an efficient online memory replay and replacement buffer strategy that significantly boosts the model's performance.
arXiv Detail & Related papers (2021-10-20T19:24:31Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.