Surrogate modeling for uncertainty quantification in nonlinear dynamics
- URL: http://arxiv.org/abs/2507.12358v1
- Date: Wed, 16 Jul 2025 15:57:09 GMT
- Title: Surrogate modeling for uncertainty quantification in nonlinear dynamics
- Authors: S. Marelli, S. Schär, B. Sudret,
- Abstract summary: Predicting the behavior of complex systems in engineering often involves significant uncertainty about operating conditions.<n>Uncertainty quantification (UQ) has become a critical tool in modeling-based engineering.<n>This book chapter presents a review of surrogate modeling techniques for UQ.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the behavior of complex systems in engineering often involves significant uncertainty about operating conditions, such as external loads, environmental effects, and manufacturing variability. As a result, uncertainty quantification (UQ) has become a critical tool in modeling-based engineering, providing methods to identify, characterize, and propagate uncertainty through computational models. However, the stochastic nature of UQ typically requires numerous evaluations of these models, which can be computationally expensive and limit the scope of feasible analyses. To address this, surrogate models, i.e., efficient functional approximations trained on a limited set of simulations, have become central in modern UQ practice. This book chapter presents a concise review of surrogate modeling techniques for UQ, with a focus on the particularly challenging task of capturing the full time-dependent response of dynamical systems. It introduces a classification of time-dependent problems based on the complexity of input excitation and discusses corresponding surrogate approaches, including combinations of principal component analysis with polynomial chaos expansions, time warping techniques, and nonlinear autoregressive models with exogenous inputs (NARX models). Each method is illustrated with simple application examples to clarify the underlying ideas and practical use.
Related papers
- Modèles de Substitution pour les Modèles à base d'Agents : Enjeux, Méthodes et Applications [0.0]
Agent-based models (ABM) are widely used to study emergent phenomena arising from local interactions.<n>The complexity of ABM limits their feasibility for real-time decision-making and large-scale scenario analysis.<n>To address these limitations, surrogate models offer an efficient alternative by learning approximations from sparse simulation data.
arXiv Detail & Related papers (2025-05-17T08:55:33Z) - Q-function Decomposition with Intervention Semantics with Factored Action Spaces [51.01244229483353]
We consider Q-functions defined over a lower dimensional projected subspace of the original action space, and study the condition for the unbiasedness of decomposed Q-functions.<n>This leads to a general scheme which we call action decomposed reinforcement learning that uses the projected Q-functions to approximate the Q-function in standard model-free reinforcement learning algorithms.
arXiv Detail & Related papers (2025-04-30T05:26:51Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.<n>Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.<n>Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models.<n>By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations.
arXiv Detail & Related papers (2025-01-21T02:38:28Z) - Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification [6.739642016124097]
We present a novel physics-constrained chaos expansion as a surrogate modeling method capable of performing both scientific machine learning (SciML) and uncertainty quantification (UQ) tasks.
The proposed method seamlessly integrates SciML into UQ and vice versa, which allows it to quantify the uncertainties in SciML tasks effectively and leverage SciML for improved uncertainty assessment during UQ-related tasks.
arXiv Detail & Related papers (2024-02-23T06:04:15Z) - Polynomial Chaos Surrogate Construction for Random Fields with Parametric Uncertainty [0.0]
Surrogate models provide a means of circumventing the high computational expense of complex models.
We develop a PCE surrogate on a joint space of intrinsic and parametric uncertainty, enabled by Rosenblatt.
We then take advantage of closed-form solutions for computing PCE Sobol indices to perform a global sensitivity analysis of the model.
arXiv Detail & Related papers (2023-11-01T14:41:54Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - FEM-based Real-Time Simulations of Large Deformations with Probabilistic
Deep Learning [1.2617078020344616]
We propose a highly efficient deep-learning surrogate framework that is able to predict the response of hyper-elastic bodies under load.
The framework takes the form of special convolutional neural network architecture, so-called U-Net, which is trained with force-displacement data.
arXiv Detail & Related papers (2021-11-02T20:05:22Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.