Polynomial Chaos Surrogate Construction for Random Fields with Parametric Uncertainty
- URL: http://arxiv.org/abs/2311.00553v2
- Date: Mon, 17 Jun 2024 19:18:37 GMT
- Title: Polynomial Chaos Surrogate Construction for Random Fields with Parametric Uncertainty
- Authors: Joy N. Mueller, Khachik Sargsyan, Craig J. Daniels, Habib N. Najm,
- Abstract summary: Surrogate models provide a means of circumventing the high computational expense of complex models.
We develop a PCE surrogate on a joint space of intrinsic and parametric uncertainty, enabled by Rosenblatt.
We then take advantage of closed-form solutions for computing PCE Sobol indices to perform a global sensitivity analysis of the model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engineering and applied science rely on computational experiments to rigorously study physical systems. The mathematical models used to probe these systems are highly complex, and sampling-intensive studies often require prohibitively many simulations for acceptable accuracy. Surrogate models provide a means of circumventing the high computational expense of sampling such complex models. In particular, polynomial chaos expansions (PCEs) have been successfully used for uncertainty quantification studies of deterministic models where the dominant source of uncertainty is parametric. We discuss an extension to conventional PCE surrogate modeling to enable surrogate construction for stochastic computational models that have intrinsic noise in addition to parametric uncertainty. We develop a PCE surrogate on a joint space of intrinsic and parametric uncertainty, enabled by Rosenblatt transformations, and then extend the construction to random field data via the Karhunen-Loeve expansion. We then take advantage of closed-form solutions for computing PCE Sobol indices to perform a global sensitivity analysis of the model which quantifies the intrinsic noise contribution to the overall model output variance. Additionally, the resulting joint PCE is generative in the sense that it allows generating random realizations at any input parameter setting that are statistically approximately equivalent to realizations from the underlying stochastic model. The method is demonstrated on a chemical catalysis example model.
Related papers
- Assessment of Uncertainty Quantification in Universal Differential Equations [1.374796982212312]
Universal Differential Equations (UDEs) are used to combine prior knowledge in the form of mechanistic formulations with universal function approximators, like neural networks.
We provide a formalisation of uncertainty quantification (UQ) for UDEs and investigate important frequentist and Bayesian methods.
arXiv Detail & Related papers (2024-06-13T06:36:19Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
We propose a methodology for improving the accuracy of surrogate models of the observable response of physical systems.
We apply the proposed methodology to constructing surrogate models via the Basis Adaptation (BA) method of the stationary hydraulic head response.
arXiv Detail & Related papers (2023-07-05T18:14:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Multielement polynomial chaos Kriging-based metamodelling for Bayesian
inference of non-smooth systems [0.0]
This paper presents a surrogate modelling technique based on domain partitioning for Bayesian parameter inference of highly nonlinear engineering models.
The developed surrogate model combines in a piecewise function an array of local Polynomial Chaos based Kriging metamodels constructed on a finite set of non-overlapping of the input space.
The efficiency and accuracy of the proposed approach are validated through two case studies, including an analytical benchmark and a numerical case study.
arXiv Detail & Related papers (2022-12-05T13:22:39Z) - Data-driven Uncertainty Quantification in Computational Human Head
Models [0.6745502291821954]
Modern biofidelic head model simulations are associated with very high computational cost and high-dimensional inputs and outputs.
In this study, a two-stage, data-driven manifold learning-based framework is proposed for uncertainty quantification (UQ) of computational head models.
It is demonstrated that the surrogate models provide highly accurate approximations of the computational model while significantly reducing the computational cost.
arXiv Detail & Related papers (2021-10-29T05:42:31Z) - Uncertainty quantification in a mechanical submodel driven by a
Wasserstein-GAN [0.0]
We show that the use of non-linear techniques in machine learning and data-driven methods is highly relevant.
Generative Adversarial Networks (GANs) are suited for such applications, where the Wasserstein-GAN with gradient penalty variant offers improved results.
arXiv Detail & Related papers (2021-10-26T13:18:06Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.