Traffic-Aware Pedestrian Intention Prediction
- URL: http://arxiv.org/abs/2507.12433v1
- Date: Wed, 16 Jul 2025 17:20:36 GMT
- Title: Traffic-Aware Pedestrian Intention Prediction
- Authors: Fahimeh Orvati Nia, Hai Lin,
- Abstract summary: This paper presents a Traffic-Aware Spatio-Temporal Graph Convolutional Network (TA-STGCN) that integrates traffic signs and their states into pedestrian intention prediction.<n>Our approach introduces the integration of dynamic traffic signal states and bounding box size as key features, allowing the model to capture both spatial and temporal dependencies in complex urban environments.
- Score: 2.5240171181791276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate pedestrian intention estimation is crucial for the safe navigation of autonomous vehicles (AVs) and hence attracts a lot of research attention. However, current models often fail to adequately consider dynamic traffic signals and contextual scene information, which are critical for real-world applications. This paper presents a Traffic-Aware Spatio-Temporal Graph Convolutional Network (TA-STGCN) that integrates traffic signs and their states (Red, Yellow, Green) into pedestrian intention prediction. Our approach introduces the integration of dynamic traffic signal states and bounding box size as key features, allowing the model to capture both spatial and temporal dependencies in complex urban environments. The model surpasses existing methods in accuracy. Specifically, TA-STGCN achieves a 4.75% higher accuracy compared to the baseline model on the PIE dataset, demonstrating its effectiveness in improving pedestrian intention prediction.
Related papers
- Pedestrian Intention and Trajectory Prediction in Unstructured Traffic Using IDD-PeD [26.011293248078797]
We introduce an Indian driving pedestrian dataset designed to address the complexities of modeling pedestrian behavior in unstructured environments.<n>The dataset provides high-level and detailed low-level comprehensive annotations focused on pedestrians requiring the ego-vehicle's attention.
arXiv Detail & Related papers (2025-06-27T10:41:18Z) - Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
We use the Spatiotemporal Generative Adversarial Network (STGAN) framework to capture complex spatial and temporal dependencies in traffic data.<n>We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020.<n>Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates.
arXiv Detail & Related papers (2025-02-03T14:23:23Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.<n>A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Enhancing Traffic Flow Prediction using Outlier-Weighted AutoEncoders:
Handling Real-Time Changes [0.7614628596146602]
We introduce the Outlier Weighted Autoencoder Modeling (OWAM) framework.
OWAM employs autoencoders for local outlier detection and generates correlation scores to assess neighboring traffic's influence.
This information enhances the traffic model's performance and supports effective real-time updates.
arXiv Detail & Related papers (2023-12-27T14:44:58Z) - SEPT: Towards Efficient Scene Representation Learning for Motion
Prediction [19.111948522155004]
This paper presents SEPT, a modeling framework that leverages self-supervised learning to develop powerful models for complex traffic scenes.
experiments demonstrate that SEPT, without elaborate architectural design or feature engineering, achieves state-of-the-art performance on the Argoverse 1 and Argoverse 2 motion forecasting benchmarks.
arXiv Detail & Related papers (2023-09-26T21:56:03Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - RTGNN: A Novel Approach to Model Stochastic Traffic Dynamics [9.267045415696263]
We propose a new traffic model, Recurrent Traffic Graph Neural Network (RTGNN)
RTGNN is a Markovian model and is able to infer future traffic states conditioned on the motion of the ego vehicle.
We explicitly model the hidden states of agents, "intentions," as part of the traffic state to reflect the inherent partial observability of traffic dynamics.
arXiv Detail & Related papers (2022-02-21T03:55:00Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.