MR-LDM -- The Merge-Reactive Longitudinal Decision Model: Game Theoretic Human Decision Modeling for Interactive Sim Agents
- URL: http://arxiv.org/abs/2507.12494v1
- Date: Tue, 15 Jul 2025 20:41:00 GMT
- Title: MR-LDM -- The Merge-Reactive Longitudinal Decision Model: Game Theoretic Human Decision Modeling for Interactive Sim Agents
- Authors: Dustin Holley, Jovin D'sa, Hossein Nourkhiz Mahjoub, Gibran Ali,
- Abstract summary: We aim to improve the simulation of the highway merge scenario by targeting a game theoretic model for tactical decision-making.<n>We couple this with an underlying dynamics model to have a unified decision and dynamics model that can capture more realistic interactions.
- Score: 0.9883562565157391
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Enhancing simulation environments to replicate real-world driver behavior, i.e., more humanlike sim agents, is essential for developing autonomous vehicle technology. In the context of highway merging, previous works have studied the operational-level yielding dynamics of lag vehicles in response to a merging car at highway on-ramps. Other works focusing on tactical decision modeling generally consider limited action sets or utilize payoff functions with large parameter sets and limited payoff bounds. In this work, we aim to improve the simulation of the highway merge scenario by targeting a game theoretic model for tactical decision-making with improved payoff functions and lag actions. We couple this with an underlying dynamics model to have a unified decision and dynamics model that can capture merging interactions and simulate more realistic interactions in an explainable and interpretable fashion. The proposed model demonstrated good reproducibility of complex interactions when validated on a real-world dataset. The model was finally integrated into a high fidelity simulation environment and confirmed to have adequate computation time efficiency for use in large-scale simulations to support autonomous vehicle development.
Related papers
- Game-Theoretic Modeling of Vehicle Unprotected Left Turns Considering Drivers' Bounded Rationality [17.5324678856791]
We propose a novel decision-making model for vehicle unprotected left-turn scenarios.<n>Our model integrates game theory with considerations for drivers' bounded rationality.<n>Our findings contribute valuable insights into the vehicle decision-making behaviors with bounded rationality.
arXiv Detail & Related papers (2025-07-02T02:22:11Z) - Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
We present a novel trajectory prediction model for autonomous driving.
Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions.
The proposed model showcases strong potential for application in real-world autonomous driving systems.
arXiv Detail & Related papers (2024-11-25T15:03:44Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - A Hierarchical Pedestrian Behavior Model to Generate Realistic Human
Behavior in Traffic Simulation [11.525073205608681]
We present a hierarchical pedestrian behavior model that generates high-level decisions through the use of behavior trees.
A full implementation of our work is integrated into GeoScenario Server, a scenario definition and execution engine.
Our model is shown to replicate the real-world pedestrians' trajectories with a high degree of fidelity and a decision-making accuracy of 98% or better.
arXiv Detail & Related papers (2022-06-01T02:04:38Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.