論文の概要: Cognitive Modelling Aspects of Neurodevelopmental Disorders Using Standard and Oscillating Neighbourhood SOM Neural Networks
- arxiv url: http://arxiv.org/abs/2507.12567v1
- Date: Wed, 16 Jul 2025 18:33:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.244066
- Title: Cognitive Modelling Aspects of Neurodevelopmental Disorders Using Standard and Oscillating Neighbourhood SOM Neural Networks
- Title(参考訳): 標準および周辺SOMニューラルネットワークを用いた神経発達障害の認知モデル
- Authors: Spyridon Revithis, Nadine Marcus,
- Abstract要約: 本稿では,自己組織化マップ(SOM)のニューラルネットワーククラスについて検討する。
自閉症と統合失調症という2つの神経発達障害の側面は、SOMネットワークを用いてモデル化されている。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background/Introduction: In this paper, the neural network class of Self-Organising Maps (SOMs) is investigated in terms of its theoretical and applied validity for cognitive modelling, particularly of neurodevelopmental disorders. Methods: A modified SOM network type, with increased biological plausibility, incorporating a type of cortical columnar oscillation in the form of an oscillating Topological Neighbourhood (TN), is introduced and applied alongside the standard SOM. Aspects of two neurodevelopmental disorders, autism and schizophrenia, are modelled using SOM networks, based on existing neurocomputational theories. Both standard and oscillating-TN SOM training is employed with targeted modifications in the TN width function. Computer simulations are conducted using revised versions of a previously introduced model (IPSOM) based on a new modelling hypothesis. Results/Conclusions: The results demonstrate that there is strong similarity between standard and oscillating-TN SOM modelling in terms of map formation behaviour, output and structure, while the oscillating version offers a more realistic computational analogue of brain function. Neuroscientific and computational arguments are presented to validate the proposed SOM modification within a cognitive modelling framework.
- Abstract(参考訳): 背景/導入:本稿では、認知モデル、特に神経発達障害に対する理論的および応用的な妥当性の観点から、自己組織化マップ(SOM)のニューラルネットワーククラスについて検討する。
方法: 振動するトポロジカル近傍 (TN) の形に皮質柱振動を取り入れた改良型SOMネットワークを標準SOMとともに導入し, 適用した。
自閉症と統合失調症という2つの神経発達障害の側面は、既存の神経計算理論に基づいてSOMネットワークを用いてモデル化されている。
標準および振動TNSOMトレーニングは、TN幅関数のターゲット変更に使用される。
コンピュータシミュレーションは、新しいモデリング仮説に基づいて、以前に導入されたモデル (IPSOM) の改訂版を用いて行われる。
結果と結論: 結果は, 地図形成行動, 出力, 構造の観点から, 標準と振動-TN SOMモデルの間に強い類似性があることを示し, 発振バージョンは, 脳機能のより現実的な計算的類似性を提供する。
神経科学的および計算的議論は、認知モデリングフレームワーク内で提案されたSOM修正を検証するために提示される。
関連論文リスト
- Pendulum Model of Spiking Neurons [0.0]
そこで本研究では, 減衰・駆動振子の動力学に基づく生物学的刺激によるスパイキングニューロンのモデルを提案する。
本稿では,Spyke-Timing Dependent Plasticity (STDP)学習ルールにより,単一ニューロンの動的解析を行い,モデルをマルチニューロン層に拡張する。
論文 参考訳(メタデータ) (2025-07-29T18:21:51Z) - NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLEは、解釈可能なニューロンの特徴を連続周波数変調した埋め込みから電流注入によって誘導されるソマティック電圧応答へのマッピングを学ぶ神経オペレーターフレームワークである。
内在的な実験変数を考慮したニューラルダイナミクスの分布を予測する。
NOBLEは、実際の実験データに基づいて検証された最初のスケールアップされたディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2025-06-05T01:01:18Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
本稿では,ハイブリッド量子古典系の非線形非断熱力学をモデル化するための畳み込みニューラルネットワークに基づくRNNモデルを提案する。
検証研究により、訓練されたPARCモデルは、一次元半古典的なホルシュタインモデルの時空進化を再現できることが示されている。
論文 参考訳(メタデータ) (2024-12-09T16:23:25Z) - Generative Modeling of Neural Dynamics via Latent Stochastic Differential Equations [1.5467259918426441]
本稿では,生体神経系の計算モデル構築のためのフレームワークを提案する。
我々は、微分ドリフトと拡散関数を持つ結合微分方程式系を用いる。
これらのハイブリッドモデルは,刺激によって誘発される神経および行動応答の予測において,競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-12-01T09:36:03Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Simulation-based Inference for Model Parameterization on Analog
Neuromorphic Hardware [1.843681725117436]
本研究では、BrainScaleS-2システム上でエミュレートされた多成分ニューロンモデルのパラメータ化のための逐次的神経後部推定アルゴリズムの適合性について検討した。
SNPEアルゴリズムはシミュレーションに基づく推論手法のクラスに属し、モデルパラメータの後方分布を推定する。
論文 参考訳(メタデータ) (2023-03-28T15:37:30Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
ディープニューラルネットワークの解釈における中核的な課題は、同じタスクのためにトレーニングされた異なるネットワークによって実装された基盤となるアルゴリズム間の共通点を特定することである。
この問題に触発されたDYNAMOは,各点がニューラルネットワークモデルに対応する低次元多様体を構築するアルゴリズムであり,対応するニューラルネットワークが同様のハイレベルな計算処理を実行する場合,その近傍に2つの点が存在する。
DYNAMOは、事前訓練されたニューラルネットワークのコレクションを入力として、隠された状態のダイナミクスとコレクション内の任意のモデルの出力をエミュレートするメタモデルを出力する。
論文 参考訳(メタデータ) (2023-02-27T19:00:05Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Cubature Kalman Filter Based Training of Hybrid Differential Equation
Recurrent Neural Network Physiological Dynamic Models [13.637931956861758]
ニューラルネットワーク近似を用いて、未知の常微分方程式を既知のODEで近似する方法を示す。
その結果、このRBSEによるNNパラメータのトレーニングは、バックプロパゲーションによるニューラルネットワークのトレーニングよりも優れた結果(測定/状態推定精度)が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-12T15:38:13Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。