論文の概要: Deep Bilinear Koopman Model for Real-Time Vehicle Control in Frenet Frame
- arxiv url: http://arxiv.org/abs/2507.12578v1
- Date: Wed, 16 Jul 2025 18:49:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.249372
- Title: Deep Bilinear Koopman Model for Real-Time Vehicle Control in Frenet Frame
- Title(参考訳): フリーネットフレームにおけるリアルタイム車両制御のためのディープバイリニアクープマンモデル
- Authors: Mohammad Abtahi, Farhang Motallebi Araghi, Navid Mojahed, Shima Nazari,
- Abstract要約: 本稿では,カービリニアFrenetフレーム内の車両力学のモデリングと制御のための深いクープマン手法を提案する。
提案フレームワークは、深層ニューラルネットワークアーキテクチャを使用して、データからクープマン演算子とその関連する不変部分空間を同時に学習する。
提案した制御器は, ベースライン制御器と比較して追従誤差を著しく低減し, 組込み自動運転車システムにおけるリアルタイム実装に適していることを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate modeling and control of autonomous vehicles remain a fundamental challenge due to the nonlinear and coupled nature of vehicle dynamics. While Koopman operator theory offers a framework for deploying powerful linear control techniques, learning a finite-dimensional invariant subspace for high-fidelity modeling continues to be an open problem. This paper presents a deep Koopman approach for modeling and control of vehicle dynamics within the curvilinear Frenet frame. The proposed framework uses a deep neural network architecture to simultaneously learn the Koopman operator and its associated invariant subspace from the data. Input-state bilinear interactions are captured by the algorithm while preserving convexity, which makes it suitable for real-time model predictive control (MPC) application. A multi-step prediction loss is utilized during training to ensure long-horizon prediction capability. To further enhance real-time trajectory tracking performance, the model is integrated with a cumulative error regulator (CER) module, which compensates for model mismatch by mitigating accumulated prediction errors. Closed-loop performance is evaluated through hardware-in-the-loop (HIL) experiments using a CarSim RT model as the target plant, with real-time validation conducted on a dSPACE SCALEXIO system. The proposed controller achieved significant reductions in tracking error relative to baseline controllers, confirming its suitability for real-time implementation in embedded autonomous vehicle systems.
- Abstract(参考訳): 自動運転車の正確なモデリングと制御は、車両力学の非線形性と結合性により、依然として根本的な課題である。
クープマン作用素理論は強力な線形制御技術を展開するための枠組みを提供するが、高忠実性モデリングのための有限次元不変部分空間を学習することは未解決の問題である。
本稿では,カービリニアFrenetフレーム内の車両力学のモデリングと制御のための深いクープマン手法を提案する。
提案フレームワークは、深層ニューラルネットワークアーキテクチャを使用して、データからクープマン演算子とその関連する不変部分空間を同時に学習する。
入力状態の双線形相互作用は、凸性を保ちながらアルゴリズムによって捕捉されるため、リアルタイムモデル予測制御(MPC)アプリケーションに適している。
トレーニング中に多段階予測損失を利用して、長距離予測機能を確保する。
さらに実時間軌道追跡性能を向上させるため、蓄積した予測誤差を緩和してモデルミスマッチを補償する累積誤差レギュレータ(CER)モジュールと統合する。
CarSim RTモデルを用いたハードウェア・イン・ザ・ループ(HIL)実験を対象とし,dSPACE SCALEXIOシステム上で実時間検証を行った。
提案した制御器は, ベースライン制御器と比較して追従誤差を著しく低減し, 組込み自動運転車システムにおけるリアルタイム実装に適していることを確認した。
関連論文リスト
- Multi-Step Deep Koopman Network (MDK-Net) for Vehicle Control in Frenet Frame [0.0]
本稿では、深層ニューラルネットワークを用いて全車動特性を捉える、新しいディープラーニングベースのクープマンモデリング手法を提案する。
二重車線変更操作において, 同定線形モデルと比較して, クープマンモデルの精度が優れていることを示す。
論文 参考訳(メタデータ) (2025-03-04T20:57:38Z) - Mitigating Traffic Oscillations in Mixed Traffic Flow with Scalable Deep Koopman Predictive Control [11.428076811557437]
本研究では,混合交通流の制御のための適応型深層クープマン予測制御フレームワーク(AdapKoopPC)を提案する。
AdapKoopnetは、ベースライン非線形モデルよりも正確なHDV予測軌道を提供する。
論文 参考訳(メタデータ) (2025-01-27T14:28:20Z) - Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
自動オープンホイールレースカーの側面力学に対するロックディファレンシャルの影響をモデル化するための新しい定式化を提案する。
本稿では,マイクロステップの離散化手法を用いて,動的に線形化し,実時間実装に適した予測を行う。
論文 参考訳(メタデータ) (2023-12-22T16:29:55Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
ドメイン認識のレベルが異なる制御指向パラメトリックモデルを提案する。
データ駆動型ブラックボックスとAUVダイナミクスのグレイボックス表現を構築するために、普遍微分方程式を用いる。
論文 参考訳(メタデータ) (2022-08-15T17:01:14Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Stochastic Deep Model Reference Adaptive Control [9.594432031144715]
本稿では,ディープニューラルネットワークを用いたモデル参照適応制御を提案する。
Deep Model Reference Adaptive Controlは、DNNモデルの出力層重みをリアルタイムに適応させるために、リアプノフ法を用いる。
データ駆動型教師付き学習アルゴリズムは、内部層パラメータの更新に使用される。
論文 参考訳(メタデータ) (2021-08-04T14:05:09Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。