A Survey of Explainable Reinforcement Learning: Targets, Methods and Needs
- URL: http://arxiv.org/abs/2507.12599v1
- Date: Wed, 16 Jul 2025 19:41:41 GMT
- Title: A Survey of Explainable Reinforcement Learning: Targets, Methods and Needs
- Authors: Léo Saulières,
- Abstract summary: This paper focuses on a sub-domain of XAI, called eXplainable Reinforcement Learning (XRL)<n>XRL aims to explain the actions of an agent that has learned by reinforcement learning.<n>We propose an intuitive taxonomy based on two questions "What" and "How"
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of recent Artificial Intelligence (AI) models has been accompanied by the opacity of their internal mechanisms, due notably to the use of deep neural networks. In order to understand these internal mechanisms and explain the output of these AI models, a set of methods have been proposed, grouped under the domain of eXplainable AI (XAI). This paper focuses on a sub-domain of XAI, called eXplainable Reinforcement Learning (XRL), which aims to explain the actions of an agent that has learned by reinforcement learning. We propose an intuitive taxonomy based on two questions "What" and "How". The first question focuses on the target that the method explains, while the second relates to the way the explanation is provided. We use this taxonomy to provide a state-of-the-art review of over 250 papers. In addition, we present a set of domains close to XRL, which we believe should get attention from the community. Finally, we identify some needs for the field of XRL.
Related papers
- Explainable Artificial Intelligence and Multicollinearity : A Mini Review of Current Approaches [0.0]
Explainable Artificial Intelligence (XAI) methods help to understand the internal mechanism of machine learning models.
The list of informative features is one of the most common output of XAI methods.
Multicollinearity is one of the big issue that should be considered when XAI generates the explanation.
arXiv Detail & Related papers (2024-06-17T13:26:53Z) - Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
Surge in black-box AI models has prompted the need to explain the internal mechanism and justify their reliability.
gradient based explanations can be directly adopted for neural network models.
We introduce both human and quantitative evaluations to measure algorithm performance.
arXiv Detail & Related papers (2024-03-15T15:49:31Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
Black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing.
We perform a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches.
We also give a detailed outlook on the challenges and promising research directions.
arXiv Detail & Related papers (2024-02-21T13:19:58Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal [0.0]
This study conducts a thorough review of extant research in Explainable Machine Learning (XML)
Our main objective is to offer a classification of XAI methods within the realm of XML.
We propose a mapping function that take to account users and their desired properties and suggest an XAI method to them.
arXiv Detail & Related papers (2023-02-07T01:06:38Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
We propose a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN)
In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process.
Our framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user.
arXiv Detail & Related papers (2021-09-03T09:46:20Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - Explainable Reinforcement Learning: A Survey [0.0]
Explainable Artificial Intelligence (XAI) has gained increased traction over the last few years.
XAI models exhibit one detrimential characteristic: a performance-transparency trade-off.
This survey attempts to address this gap by offering an overview of Explainable Reinforcement Learning (XRL) methods.
arXiv Detail & Related papers (2020-05-13T10:52:49Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.