論文の概要: A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis
- arxiv url: http://arxiv.org/abs/2507.12645v1
- Date: Wed, 16 Jul 2025 21:38:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.278237
- Title: A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis
- Title(参考訳): バイオメディカル時系列データのロバスト深層学習分類のための新しいデータ強化戦略:心電図・脳波解析への応用
- Authors: Mohammed Guhdar, Ramadhan J. Mstafa, Abdulhakeem O. Mohammed,
- Abstract要約: 本研究では,様々な信号タイプにまたがる最先端性能を実現する,新しい統合型深層学習フレームワークを提案する。
従来の研究とは異なり、将来予測能力を達成するために信号の複雑さを科学的に増加させ、最高の予測を導いた。
アーキテクチャには130MBのメモリとプロセスが10ミリ秒で必要であり、ローエンドデバイスやウェアラブルデバイスへのデプロイに適していることを示唆している。
- 参考スコア(独自算出の注目度): 2.355460994057843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing need for accurate and unified analysis of diverse biological signals, such as ECG and EEG, is paramount for comprehensive patient assessment, especially in synchronous monitoring. Despite advances in multi-sensor fusion, a critical gap remains in developing unified architectures that effectively process and extract features from fundamentally different physiological signals. Another challenge is the inherent class imbalance in many biomedical datasets, often causing biased performance in traditional methods. This study addresses these issues by proposing a novel and unified deep learning framework that achieves state-of-the-art performance across different signal types. Our method integrates a ResNet-based CNN with an attention mechanism, enhanced by a novel data augmentation strategy: time-domain concatenation of multiple augmented variants of each signal to generate richer representations. Unlike prior work, we scientifically increase signal complexity to achieve future-reaching capabilities, which resulted in the best predictions compared to the state of the art. Preprocessing steps included wavelet denoising, baseline removal, and standardization. Class imbalance was effectively managed through the combined use of this advanced data augmentation and the Focal Loss function. Regularization techniques were applied during training to ensure generalization. We rigorously evaluated the proposed architecture on three benchmark datasets: UCI Seizure EEG, MIT-BIH Arrhythmia, and PTB Diagnostic ECG. It achieved accuracies of 99.96%, 99.78%, and 100%, respectively, demonstrating robustness across diverse signal types and clinical contexts. Finally, the architecture requires ~130 MB of memory and processes each sample in ~10 ms, suggesting suitability for deployment on low-end or wearable devices.
- Abstract(参考訳): 心電図や脳波などの多様な生体信号の正確かつ統一的な分析の必要性は、特に同期モニタリングにおいて、総合的な患者評価において最重要である。
マルチセンサー融合の進歩にもかかわらず、基本的な異なる生理的信号から特徴を効果的に処理し抽出する統一アーキテクチャの開発において重要なギャップが残っている。
もう一つの課題は、多くのバイオメディカルデータセットで固有のクラス不均衡であり、しばしば従来の手法でバイアスのあるパフォーマンスを引き起こす。
本研究では,様々な信号タイプにまたがる最先端性能を実現する,新しい統合型ディープラーニングフレームワークを提案することにより,これらの課題に対処する。
提案手法は,ResNetベースのCNNとアテンション機構を統合し,新しいデータ拡張戦略によって強化される。
従来の研究と異なり、将来予測能力を達成するために信号の複雑さを科学的に増加させ、その結果、最先端技術と比較して最高の予測が得られた。
前処理のステップにはウェーブレットのデノイング、ベースラインの除去、標準化があった。
クラス不均衡は、この高度なデータ拡張とFocal Loss関数を併用することで効果的に管理された。
正規化技術は、一般化を保証するために訓練中に適用された。
UCI Seizure EEG, MIT-BIH Arrhythmia, PTB Diagnostic ECGの3つのベンチマークデータセットを用いて,提案したアーキテクチャを厳格に評価した。
99.96%、99.78%、100%のアキュラシーを達成し、様々な信号タイプと臨床の文脈で堅牢性を証明した。
最後に、アーキテクチャには130MBのメモリとプロセスが10ミリ秒以内で必要であり、ローエンドまたはウェアラブルデバイスへのデプロイに適していることを示唆している。
関連論文リスト
- PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation [18.978031999678507]
様々な生理的信号におけるマルチスケールの時間周波数特徴を捉えることを目的とした,新しいウェーブレットに基づく生理的信号解析手法を提案する。
EMGとECGに特有の2つの大規模事前訓練モデルが導入され、性能が向上し、下流タスクに新たなベースラインが設定された。
統合されたマルチモーダルフレームワークは、事前訓練されたEEGモデルを統合することで構築され、各モーダルはその専用ブランチを通してガイドされ、学習可能な重み付き融合によって融合される。
論文 参考訳(メタデータ) (2025-06-12T05:11:41Z) - Towards Robust Multimodal Physiological Foundation Models: Handling Arbitrary Missing Modalities [9.785262633953794]
生理オムニ (Phylo Omni) は、マルチモーダルな生理的信号解析の基礎モデルである。
分離されたマルチモーダル・トークンーザを訓練し、マスクされた信号の事前訓練を可能にする。
最先端のパフォーマンスを達成しつつ、モダリティの欠如に対して強い堅牢性を維持します。
論文 参考訳(メタデータ) (2025-04-28T09:00:04Z) - BioSerenity-E1: a self-supervised EEG model for medical applications [0.0]
BioSerenity-E1は臨床脳波治療のための自己監督型基礎モデルの1つである。
スペクトルトークン化とマスク付き予測を組み合わせることで、関連する診断タスク間で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-03-13T13:42:46Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - Boosting Masked ECG-Text Auto-Encoders as Discriminative Learners [10.088785685439134]
本稿では,コントラッシブマスクを用いた自動エンコーダアーキテクチャを用いて,ECGとテキストデータを事前学習するフレームワークD-BETAを提案する。
D-BETAは、生成性の強さと差別能力の強化を一意に組み合わせて、堅牢なクロスモーダル表現を実現する。
論文 参考訳(メタデータ) (2024-10-03T01:24:09Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
本研究では、拡散モデルと強化学習を統合することにより、脳波(EEG)信号の合成に革新的なアプローチを導入する。
提案手法は, 時間的・スペクトル的特徴の詳細な脳波信号の生成を促進させ, 合成データセットの信頼性と多様性を向上する。
論文 参考訳(メタデータ) (2024-09-14T07:22:31Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。