論文の概要: SOD-YOLO: Enhancing YOLO-Based Detection of Small Objects in UAV Imagery
- arxiv url: http://arxiv.org/abs/2507.12727v1
- Date: Thu, 17 Jul 2025 02:04:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.318944
- Title: SOD-YOLO: Enhancing YOLO-Based Detection of Small Objects in UAV Imagery
- Title(参考訳): ソードヨーロ:UAV画像におけるヨーロによる小物体検出の強化
- Authors: Peijun Wang, Jinhua Zhao,
- Abstract要約: 実験結果から,SOD-YOLOは検出性能を著しく向上することが示された。
SOD-YOLOは、UAV画像における小さな物体検出のための実用的で効率的なソリューションである。
- 参考スコア(独自算出の注目度): 5.639904484784127
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Small object detection remains a challenging problem in the field of object detection. To address this challenge, we propose an enhanced YOLOv8-based model, SOD-YOLO. This model integrates an ASF mechanism in the neck to enhance multi-scale feature fusion, adds a Small Object Detection Layer (named P2) to provide higher-resolution feature maps for better small object detection, and employs Soft-NMS to refine confidence scores and retain true positives. Experimental results demonstrate that SOD-YOLO significantly improves detection performance, achieving a 36.1% increase in mAP$_{50:95}$ and 20.6% increase in mAP$_{50}$ on the VisDrone2019-DET dataset compared to the baseline model. These enhancements make SOD-YOLO a practical and efficient solution for small object detection in UAV imagery. Our source code, hyper-parameters, and model weights are available at https://github.com/iamwangxiaobai/SOD-YOLO.
- Abstract(参考訳): オブジェクト検出の分野では、小さなオブジェクト検出は依然として難しい問題である。
そこで本研究では,改良型YOLOv8モデルであるSOD-YOLOを提案する。
このモデルは、首にASF機構を統合し、マルチスケールな特徴融合を強化し、より高解像度な特徴マップを提供するためのSmall Object Detection Layer (P2)を追加し、信頼度を向上し、真の正の値を保持するためにSoft-NMSを使用する。
実験の結果、SOD-YOLOは検出性能を大幅に改善し、ベースラインモデルと比較してmAP$_{50:95}$が36.1%、mAP$_{50}$が20.6%上昇した。
これらの拡張により、SOD-YOLOはUAV画像の小さな物体検出のための実用的で効率的なソリューションとなる。
ソースコード、ハイパーパラメータ、モデルウェイトはhttps://github.com/iamwangxiaobai/SOD-YOLO.comで公開されています。
関連論文リスト
- MASF-YOLO: An Improved YOLOv11 Network for Small Object Detection on Drone View [0.0]
マルチスケールコンテキストアグリゲーションとスケール適応型フュージョンYOLO(MASF-YOLO)を提案する。
UAV画像における小物体検出の難しさに対処するため,小型物体の検出精度を大幅に向上させるMFAM(Multi-scale Feature Aggregation Module)を設計した。
第3に,マルチスケール機能融合機能を強化したDASI(Dimension-Aware Selective Integration Module)を導入する。
論文 参考訳(メタデータ) (2025-04-25T07:43:33Z) - YOLO-RS: Remote Sensing Enhanced Crop Detection Methods [0.32985979395737786]
既存のターゲット検出手法は、リモートセンシング画像において、小さなターゲットを扱う際の性能が劣っている。
YOLO-RSは、小さなターゲットの検出を大幅に強化した最新のYolov11に基づいている。
リモートセンシング画像における小目標検出作業におけるYOLO-RSの有効性と適用可能性を検証する実験を行った。
論文 参考訳(メタデータ) (2025-04-15T13:13:22Z) - A lightweight model FDM-YOLO for small target improvement based on YOLOv8 [0.0]
小さいターゲットは、低いピクセル数、複雑な背景、様々な射撃角度のために検出が困難である。
本稿では,小目標検出に焦点をあて,低計算制約下での物体検出手法について検討する。
論文 参考訳(メタデータ) (2025-03-06T14:06:35Z) - YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5 [19.388112026410045]
YOLO-TLAは、YOLOv5上に構築された高度な物体検出モデルである。
まず、ネックネットワークピラミッドアーキテクチャにおいて、小さなオブジェクトに対する検出層を新たに導入する。
このモジュールはスライディングウィンドウの特徴抽出を使い、計算要求とパラメータ数の両方を効果的に最小化する。
論文 参考訳(メタデータ) (2024-02-22T05:55:17Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。
提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。
YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (2024-01-30T18:59:38Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの作業は、他のYOLOモデルのプラグイン・アンド・プレイモジュールとしても機能します。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
論文 参考訳(メタデータ) (2023-02-15T06:05:14Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Evaluation of YOLO Models with Sliced Inference for Small Object
Detection [0.0]
この研究は、小さなオブジェクト検出のためにYOLOv5とYOLOXモデルをベンチマークすることを目的としている。
スライスされた微調整とスライスされた推論が組み合わさって全てのモデルに大幅な改善をもたらした。
論文 参考訳(メタデータ) (2022-03-09T15:24:30Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
大規模なシーンの検出は、小さなオブジェクトと極端なスケールの変動のために難しい問題である。
本稿では,物体検出のための焦点領域を適応的に拡大するために,フレキシブルな形状と焦点長を有する選択的拡大器として,新しい適応型Zoom(AdaZoom)ネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T03:30:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。