論文の概要: Domain-Enhanced Dual-Branch Model for Efficient and Interpretable Accident Anticipation
- arxiv url: http://arxiv.org/abs/2507.12755v1
- Date: Thu, 17 Jul 2025 03:16:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.325086
- Title: Domain-Enhanced Dual-Branch Model for Efficient and Interpretable Accident Anticipation
- Title(参考訳): ドメイン強化二重分岐モデルによる事故予測の効率化
- Authors: Yanchen Guan, Haicheng Liao, Chengyue Wang, Bonan Wang, Jiaxun Zhang, Jia Hu, Zhenning Li,
- Abstract要約: 本稿では,ダッシュカムビデオからの視覚情報と,事故報告から得られた構造化テキストデータを統合する事故予測フレームワークを提案する。
ベンチマークデータセットを用いた総合評価では、予測精度の向上、応答性の向上、計算オーバーヘッドの低減、アプローチの解釈可能性の向上が評価された。
- 参考スコア(独自算出の注目度): 5.188064309021252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing precise and computationally efficient traffic accident anticipation system is crucial for contemporary autonomous driving technologies, enabling timely intervention and loss prevention. In this paper, we propose an accident anticipation framework employing a dual-branch architecture that effectively integrates visual information from dashcam videos with structured textual data derived from accident reports. Furthermore, we introduce a feature aggregation method that facilitates seamless integration of multimodal inputs through large models (GPT-4o, Long-CLIP), complemented by targeted prompt engineering strategies to produce actionable feedback and standardized accident archives. Comprehensive evaluations conducted on benchmark datasets (DAD, CCD, and A3D) validate the superior predictive accuracy, enhanced responsiveness, reduced computational overhead, and improved interpretability of our approach, thus establishing a new benchmark for state-of-the-art performance in traffic accident anticipation.
- Abstract(参考訳): 高精度で計算効率のよい交通事故予報システムを開発することは、現代の自動運転技術にとって重要であり、タイムリーな介入と損失防止を可能にしている。
本稿では,ダッシュカム映像の視覚情報と,事故報告から得られた構造化テキストデータとを効果的に統合する,デュアルブランチアーキテクチャを用いた事故予測フレームワークを提案する。
さらに,大規模モデル (GPT-4o, Long-CLIP) によるマルチモーダル入力のシームレスな統合を容易にする機能集約手法を提案する。
ベンチマークデータセット (DAD, CCD, A3D) で実施した総合評価は, 予測精度の向上, 応答性の向上, 計算オーバーヘッドの低減, 提案手法の解釈可能性の向上などにより, 交通事故予測における最先端性能の新たなベンチマークが確立された。
関連論文リスト
- World Model-Based End-to-End Scene Generation for Accident Anticipation in Autonomous Driving [1.8277374107085946]
本稿では,生成的拡張シーンと適応的時間的推論を組み合わせた包括的枠組みを提案する。
我々は、高解像度で統計的に一貫した運転シナリオを作成するために、ドメインインフォームドプロンプトによって世界モデルを利用するビデオ生成パイプラインを開発した。
並列に、強化グラフ畳み込みと拡張時間演算子を通して時間関係を符号化する動的予測モデルを構築する。
論文 参考訳(メタデータ) (2025-07-17T03:34:54Z) - NAP-Tuning: Neural Augmented Prompt Tuning for Adversarially Robust Vision-Language Models [72.58372335140241]
AdvPT(Adversarial Prompt Tuning)は、視覚言語モデル(VLM)における対向的ロバスト性を高めるための学習可能なテキストプロンプトを導入した。
マルチモーダル適応型プロンプトチューニング(NAP-Tuning)のためのニューラルネットワークフレームワークを提案する。
我々のアプローチは、挑戦的なAutoAttackベンチマークの下で最強のベースラインよりも大幅に改善され、ViT-B16では33.5%、ViT-B32アーキテクチャでは33.0%を上回りました。
論文 参考訳(メタデータ) (2025-06-15T03:34:23Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVEは、ビジョンランゲージモデルとエンド・ツー・エンド(E2E)モデルを相乗化して自動運転車の計画を強化する革新的なフレームワークである。
提案手法は,VLMとE2Eコンポーネント間の包括的インタラクションを実現するために,共有ビジュアルエンコーダによる機能レベルでの知識共有を重視している。
論文 参考訳(メタデータ) (2025-05-22T15:44:30Z) - Deep Learning Advances in Vision-Based Traffic Accident Anticipation: A Comprehensive Review of Methods,Datasets,and Future Directions [10.3325464784641]
視覚に基づく交通事故予測(Vision-TAA)は,ディープラーニング時代において有望なアプローチとして現れている。
本稿では, 事故予測のための教師付き, 教師なし, ハイブリッド学習モデルの適用に焦点をあてた147の最近の研究をレビューする。
論文 参考訳(メタデータ) (2025-05-12T14:34:22Z) - Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
16時間から8192時間に及ぶ内部駆動データセット上での簡易エンド・ツー・エンド駆動アーキテクチャの性能評価を行った。
具体的には、目標の性能向上を達成するために、どの程度のトレーニングデータが必要かを調査する。
論文 参考訳(メタデータ) (2025-04-06T03:23:48Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
我々は、現在のSOTA(State-of-the-art)2Dベースの手法を超えて予測能力を著しく向上させる革新的なフレームワークであるAccNetを導入する。
本稿では,交通事故データセットにおけるスキュードデータ分散の課題に対処するため,早期予測のためのバイナリ適応損失(BA-LEA)を提案する。
論文 参考訳(メタデータ) (2024-09-02T13:46:25Z) - When, Where, and What? A Novel Benchmark for Accident Anticipation and Localization with Large Language Models [14.090582912396467]
本研究では,複数の次元にわたる予測能力を高めるために,LLM(Large Language Models)を統合した新しいフレームワークを提案する。
複雑な運転シーンにおけるリスクの高い要素の優先順位を動的に調整する,革新的なチェーンベースアテンション機構を開発した。
DAD, CCD, A3Dデータセットの実証的検証は平均精度(AP)と平均時間到達精度(mTTA)において優れた性能を示す
論文 参考訳(メタデータ) (2024-07-23T08:29:49Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Smart City Transportation: Deep Learning Ensemble Approach for Traffic
Accident Detection [0.0]
本稿では,スマートシティ交通監視システムにおける事故検出に適した軽量ソリューションであるI3D-CONVLSTM2Dモデルアーキテクチャを提案する。
I3D-CONVLSTM2D RGB + Optical-Flow (Trainable) モデルでは, 平均精度が87%, 平均精度が87%であった。
我々の研究は、スマート都市インフラ内のエッジIoTデバイスへのリアルタイム統合を前提とした、高度な視覚ベースの事故検出システムへの道筋を照らしている。
論文 参考訳(メタデータ) (2023-10-16T03:47:08Z) - SEPT: Towards Efficient Scene Representation Learning for Motion
Prediction [19.111948522155004]
本稿では,自己教師付き学習を活用し,複雑な交通シーンのための強力なモデルを開発するためのモデリングフレームワークSEPTを提案する。
実験により、SEPTはアーキテクチャ設計や機能エンジニアリングを伴わず、Argoverse 1 と Argoverse 2 のモーション予測ベンチマークで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-09-26T21:56:03Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
ディープニューラルネットワーク(DNN)を用いた軌道予測は、自律運転システムにおいて不可欠な要素である。
これらの手法は敵の攻撃に対して脆弱であり、衝突などの重大な結果をもたらす。
本研究では,敵対的攻撃に対する軌道予測モデルを保護するための2つの重要な要素を同定する。
論文 参考訳(メタデータ) (2022-07-29T22:35:05Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。