Logit Arithmetic Elicits Long Reasoning Capabilities Without Training
- URL: http://arxiv.org/abs/2507.12759v1
- Date: Thu, 17 Jul 2025 03:31:36 GMT
- Title: Logit Arithmetic Elicits Long Reasoning Capabilities Without Training
- Authors: Yunxiang Zhang, Muhammad Khalifa, Lechen Zhang, Xin Liu, Ayoung Lee, Xinliang Frederick Zhang, Farima Fatahi Bayat, Lu Wang,
- Abstract summary: Large reasoning models (LRMs) can do complex reasoning via long chain-of-thought (CoT) involving cognitive strategies such as backtracking and self-correction.<n>Recent studies suggest that some models inherently possess these long reasoning abilities, which may be unlocked via extra training.<n>We propose a decoding-time approach, ThinkLogit, to tune a target large LM for long reasoning using a substantially smaller model as guider.
- Score: 14.015546463427732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large reasoning models (LRMs) can do complex reasoning via long chain-of-thought (CoT) involving cognitive strategies such as backtracking and self-correction. Recent studies suggest that some models inherently possess these long reasoning abilities, which may be unlocked via extra training. Our work first investigates whether we can elicit such behavior without any training. To this end, we propose a decoding-time approach, ThinkLogit, which utilizes logits arithmetic (Liu et al., 2024) to tune a target large LM for long reasoning using a substantially smaller model as guider. We then show that we can further boost performance by training the guider model with preference optimization over correct/incorrect reasoning pairs sampled from both the target and guider model -- a setup we refer to as ThinkLogit-DPO. Our experiments demonstrate that ThinkLogit and ThinkLogit-DPO achieve a relative improvement in pass@1 by 26% and 29%, respectively, over four mathematical datasets using the Qwen2.5-32B when guided by R1-Distill-Qwen-1.5B -- a model 21x smaller. Lastly, we show that ThinkLogit can transfer long reasoning skills acquired through reinforcement learning, improving pass@1 by 13% relative compared to the Qwen2.5-32B base model. Our work presents a computationally-efficient method to elicit long reasoning in large models with minimal or no additional training.
Related papers
- Teaching LLM to Reason: Reinforcement Learning from Algorithmic Problems without Code [76.80306464249217]
We propose TeaR, which aims at teaching LLMs to reason better.<n>TeaR leverages careful data curation and reinforcement learning to guide models in discovering optimal reasoning paths through code-related tasks.<n>We conduct extensive experiments using two base models and three long-CoT distillation models, with model sizes ranging from 1.5 billion to 32 billion parameters, and across 17 benchmarks spanning Math, Knowledge, Code, and Logical Reasoning.
arXiv Detail & Related papers (2025-07-10T07:34:05Z) - TL;DR: Too Long, Do Re-weighting for Efficient LLM Reasoning Compression [55.37723860832064]
We propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations.<n>We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels.
arXiv Detail & Related papers (2025-06-03T09:23:41Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
Large language models (LLMs) benefit from increased test-time compute, a phenomenon known as test-time scaling.<n>However, reasoning-optimized models often overthink even simple problems, producing excessively verbose outputs and leading to low token efficiency.<n>We identify two key causes of this verbosity: (1) reinforcement learning reduces the information density of forward reasoning, and (2) backward chain-of thought training encourages redundant and often unnecessary verification steps.
arXiv Detail & Related papers (2025-05-28T06:24:45Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT)<n>We find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA)<n>With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks.
arXiv Detail & Related papers (2025-02-11T08:48:48Z) - Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning [65.2421542320293]
Reasoning abilities are crucial components of general intelligence.<n>Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks.<n>This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through textbfOutcome textbfREwtextbfArd-based reinforcement textbfLearning for mathematical reasoning tasks.
arXiv Detail & Related papers (2025-02-10T18:57:29Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1-like models can emulate human-like long-time thinking during inference.<n>This paper presents the first comprehensive study on the prevalent issue of overthinking in these models.<n>We propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy.
arXiv Detail & Related papers (2024-12-30T18:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.