論文の概要: A Semi-Supervised Learning Method for the Identification of Bad Exposures in Large Imaging Surveys
- arxiv url: http://arxiv.org/abs/2507.12784v1
- Date: Thu, 17 Jul 2025 04:52:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.345074
- Title: A Semi-Supervised Learning Method for the Identification of Bad Exposures in Large Imaging Surveys
- Title(参考訳): 大規模イメージングサーベイにおけるバッド露光の同定のための半教師付き学習法
- Authors: Yufeng Luo, Adam D. Myers, Alex Drlica-Wagner, Dario Dematties, Salma Borchani, Frank Valdes, Arjun Dey, David Schlegel, Rongpu Zhou, DESI Legacy Imaging Surveys Team,
- Abstract要約: 大規模イメージングサーベイにおいて、低品質な露光を検出するための機械学習に基づくアプローチを導入する。
パイプラインは780個の異常な露光を識別し、視覚検査により検証する。
本手法は,高効率で適応性が高いため,他の大規模イメージングサーベイにおいて,品質管理のためのスケーラブルなソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As the data volume of astronomical imaging surveys rapidly increases, traditional methods for image anomaly detection, such as visual inspection by human experts, are becoming impractical. We introduce a machine-learning-based approach to detect poor-quality exposures in large imaging surveys, with a focus on the DECam Legacy Survey (DECaLS) in regions of low extinction (i.e., $E(B-V)<0.04$). Our semi-supervised pipeline integrates a vision transformer (ViT), trained via self-supervised learning (SSL), with a k-Nearest Neighbor (kNN) classifier. We train and validate our pipeline using a small set of labeled exposures observed by surveys with the Dark Energy Camera (DECam). A clustering-space analysis of where our pipeline places images labeled in ``good'' and ``bad'' categories suggests that our approach can efficiently and accurately determine the quality of exposures. Applied to new imaging being reduced for DECaLS Data Release 11, our pipeline identifies 780 problematic exposures, which we subsequently verify through visual inspection. Being highly efficient and adaptable, our method offers a scalable solution for quality control in other large imaging surveys.
- Abstract(参考訳): 天文学的画像調査のデータ量が急増するにつれて、人間の目視検査のような従来の画像異常検出手法は実用的ではないものになりつつある。
大規模イメージングサーベイにおける品質の低い露出を検出するための機械学習ベースのアプローチを導入し,低絶滅域(すなわち$E(B-V)<0.04$)におけるDECam Legacy Survey(DECaLS)に着目した。
我々の半教師付きパイプラインは、自己教師付き学習(SSL)によって訓練された視覚変換器(ViT)とk-Nearest Neighbor(kNN)分類器を統合する。
我々は、Dark Energy Camera (DECam) で観測された小さなラベル付き露光を用いてパイプラインを訓練し、検証する。
パイプラインが ``good'' と ``bad'' のカテゴリでラベル付けされたイメージをどこに配置するかをクラスタリング空間で分析すると、我々のアプローチは露出の質を効率的に正確に決定できることを示している。
DECaLS Data Release 11の新しいイメージングに応用して、パイプラインは780個の問題のある露出を特定し、視覚検査によって検証します。
本手法は,高効率で適応性が高いため,他の大規模イメージングサーベイにおいて,品質管理のためのスケーラブルなソリューションを提供する。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - MODEL&CO: Exoplanet detection in angular differential imaging by learning across multiple observations [37.845442465099396]
ほとんどの後処理法は、対象の観測自体から核分裂のモデルを構築している。
本稿では,教師付き深層学習技術を利用して,複数観測のアーカイブからニュアンスモデルを構築することを提案する。
本稿では,提案手法をVLT/SPHERE機器から得られた複数のデータセットに適用し,高精度なリコールトレードオフを示す。
論文 参考訳(メタデータ) (2024-09-23T09:22:45Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
テキストと画像の拡散モデルは、画像認識の恩恵を受ける大きな可能性を示している。
有望ではあるが、拡散生成画像の教師なし学習に特化した調査は不十分である。
上記フリーアテンションマスクをフル活用することで、カスタマイズされたソリューションを導入する。
論文 参考訳(メタデータ) (2023-08-13T10:07:46Z) - Image Denoising and the Generative Accumulation of Photons [63.14988413396991]
我々は,次の光子がどこに到着できるかを予測するために訓練されたネットワークが,実際に最小平均二乗誤差(MMSE)を解くことを示している。
自己監督型認知のための新しい戦略を提案する。
本稿では,画像に少量の光子を反復的にサンプリングし,付加することにより,可能な解の後方からサンプリングする新しい方法を提案する。
論文 参考訳(メタデータ) (2023-07-13T08:03:32Z) - Comparison of semi-supervised learning methods for High Content
Screening quality control [0.34998703934432673]
高濃度スクリーニング(HCS)は、高スループットで画像から複雑な細胞表現型を定量化する。
このプロセスは、アウト・オブ・フォーカス画像のぼかし、蛍光彩飽和、破片、高レベルのノイズ、予期しない自動蛍光、空のイメージなどの画像収差によって妨げられる。
簡単な半教師付き学習ソリューションを提供するために,画像アノテーションを必要としない深層学習の選択肢を評価する。
論文 参考訳(メタデータ) (2022-08-09T08:14:36Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
本稿では,信号の代わりにノイズから学習するための拡散確率モデルを提案する。
本手法は,簡単な作業パイプラインと少量のトレーニングデータを用いて,画像品質を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-01-27T19:02:38Z) - Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object
Detection [66.10057490293981]
半監視対象検出のためのデータ不確実性誘導多相学習法を提案する。
本手法は,ベースライン手法と比較して異常に動作し,大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-03-29T09:27:23Z) - Learned Camera Gain and Exposure Control for Improved Visual Feature
Detection and Matching [12.870196901446208]
我々は、環境照明の変化を考慮に入れたデータ駆動型アプローチを探求し、ビジュアル・オドメトリー(VO)や視覚同時像定位マッピング(SLAM)で使用する画像の品質を改善した。
我々は、カメラゲインと露出時間パラメータを予測的に調整するために、深層畳み込みニューラルネットワークモデルを訓練する。
我々は、我々のネットワークが劇的な照明変化を予想し、補うことができるような、広範囲な実世界の実験を通して実証する。
論文 参考訳(メタデータ) (2021-02-08T16:46:09Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Pushing the Limit of Unsupervised Learning for Ultrasound Image Artifact
Removal [41.10604715789614]
ディープ・ラーニング・アプローチは超音波イメージングに成功している。
本稿では, 最適輸送駆動サイクルGAN (OT-cycleGAN) を用いた教師なし学習の最近の理論に着想を得て, 教師なしディープラーニングの適用性を検討した。
論文 参考訳(メタデータ) (2020-06-26T03:21:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。