論文の概要: ATL-Diff: Audio-Driven Talking Head Generation with Early Landmarks-Guide Noise Diffusion
- arxiv url: http://arxiv.org/abs/2507.12804v1
- Date: Thu, 17 Jul 2025 05:40:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.352062
- Title: ATL-Diff: Audio-Driven Talking Head Generation with Early Landmarks-Guide Noise Diffusion
- Title(参考訳): ATL-Diff:初期ランドマークを用いた音声駆動型トーキングヘッド-誘導雑音拡散
- Authors: Hoang-Son Vo, Quang-Vinh Nguyen, Seungwon Kim, Hyung-Jeong Yang, Soonja Yeom, Soo-Hyung Kim,
- Abstract要約: 本稿では,雑音や計算コストを低減しつつ,同期制限に対処する新しいアプローチであるATL-Diffを紹介する。
本フレームワークは,音声を顔のランドマークに変換するランドマーク生成モジュール(Landmarks-Guide Noise),ランドマークに応じてノイズを分散して音声を分離するランドマーク-ギターノイズアプローチ(Landmarks-Guide Noise approach),識別特性を保存する3DID拡散ネットワーク(DID Diffusion Network)の3つの重要なコンポーネントを備える。
- 参考スコア(独自算出の注目度): 10.693098404753387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio-driven talking head generation requires precise synchronization between facial animations and audio signals. This paper introduces ATL-Diff, a novel approach addressing synchronization limitations while reducing noise and computational costs. Our framework features three key components: a Landmark Generation Module converting audio to facial landmarks, a Landmarks-Guide Noise approach that decouples audio by distributing noise according to landmarks, and a 3D Identity Diffusion network preserving identity characteristics. Experiments on MEAD and CREMA-D datasets demonstrate that ATL-Diff outperforms state-of-the-art methods across all metrics. Our approach achieves near real-time processing with high-quality animations, computational efficiency, and exceptional preservation of facial nuances. This advancement offers promising applications for virtual assistants, education, medical communication, and digital platforms. The source code is available at: \href{https://github.com/sonvth/ATL-Diff}{https://github.com/sonvth/ATL-Diff}
- Abstract(参考訳): 音声駆動音声ヘッド生成には、顔のアニメーションと音声信号の正確な同期が必要である。
本稿では,雑音や計算コストを低減しつつ,同期制限に対処する新しいアプローチであるATL-Diffを紹介する。
本フレームワークは,音声を顔のランドマークに変換するランドマーク生成モジュール(Landmarks-Guide Noise),ランドマークに応じてノイズを分散して音声を分離するランドマーク-ギターノイズアプローチ(Landmarks-Guide Noise approach),識別特性を保存する3DID拡散ネットワーク(DID Diffusion Network)の3つの重要なコンポーネントを備える。
MEADとCREMA-Dデータセットの実験では、ATL-Diffはすべてのメトリクスで最先端のメソッドよりも優れています。
提案手法は,高品質なアニメーション,計算効率,顔のニュアンスを異常に保存した,ほぼリアルタイムな処理を実現する。
この進歩は、仮想アシスタント、教育、医療コミュニケーション、デジタルプラットフォームに有望な応用を提供する。
ソースコードは以下の通りである。 \href{https://github.com/sonvth/ATL-Diff}{https://github.com/sonvth/ATL-Diff}
関連論文リスト
- MirrorMe: Towards Realtime and High Fidelity Audio-Driven Halfbody Animation [21.216297567167036]
MirrorMeは、LTXビデオモデル上に構築されたリアルタイムで制御可能なフレームワークである。
MirrorMeは映像を空間的に時間的に圧縮し、効率的な遅延空間をデノイングする。
EMTDベンチマークの実験では、MirrorMeの忠実さ、リップシンク精度、時間的安定性が実証されている。
論文 参考訳(メタデータ) (2025-06-27T09:57:23Z) - ThinkSound: Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing [52.33281620699459]
ThinkSoundは、Chain-of-Thought(CoT)推論を利用して、ビデオの段階的にインタラクティブなオーディオ生成と編集を可能にする新しいフレームワークである。
提案手法は,3つの相補的な段階に分解する: セマンティック・コヒーレント, 正確なユーザインタラクションによる対話型オブジェクト中心の洗練, 自然言語命令でガイドされたターゲット編集。
実験により、ThinkSoundはオーディオメトリクスとCoTメトリクスの両方で、ビデオからオーディオ生成における最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-06-26T16:32:06Z) - CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment [76.32508013503653]
CAV-MAE Sync は,自己教師型音声視覚学習のためのオリジナルの CAV-MAE フレームワークの簡易かつ効果的な拡張として提案する。
音声をグローバルな表現ではなく,映像フレームに整合した時間的シーケンスとして扱うことで,モダリティ間のミスマッチに対処する。
パッチトークンのセマンティック負荷を低減するための学習可能なレジスタトークンを導入することにより,空間的ローカライゼーションを改善する。
論文 参考訳(メタデータ) (2025-05-02T12:59:58Z) - PointTalk: Audio-Driven Dynamic Lip Point Cloud for 3D Gaussian-based Talking Head Synthesis [27.97031664678664]
高忠実度音声ヘッドの合成能力により, 放射場に基づく手法が注目されている。
本稿では,頭部の静的な3次元ガウス場を構築し,音声と同期して変形するPointTalkという新しい3次元ガウス法を提案する。
提案手法は,従来の手法と比較して,音声ヘッド合成における高忠実度およびオーディオ-リップ同期に優れる。
論文 参考訳(メタデータ) (2024-12-11T16:15:14Z) - KMTalk: Speech-Driven 3D Facial Animation with Key Motion Embedding [19.15471840100407]
キーモーション埋め込みを用いた音声系列から3次元顔の動きを合成する新しい手法を提案する。
本手法は,言語に基づくキーモーション獲得とモーダル間動作完了の2つのモジュールを通じて,言語的およびデータ駆動の先行情報を統合する。
後者は、キーモーションを音声機能によって案内される3D音声のフルシーケンスに拡張し、時間的コヒーレンスとオーディオ-視覚的整合性を改善する。
論文 参考訳(メタデータ) (2024-09-02T09:41:24Z) - S^3D-NeRF: Single-Shot Speech-Driven Neural Radiance Field for High Fidelity Talking Head Synthesis [14.437741528053504]
単一ショット音声駆動ラジアンス場(S3D-NeRF)法を設計し,各アイデンティティーに対する代表的外観特徴の学習,音声による異なる顔領域の動作のモデル化,唇領域の時間的一貫性の維持という3つの課題に対処する。
我々のS3D-NeRFは、ビデオの忠実さとオーディオ-リップ同期の両方において、過去の技術を上回っています。
論文 参考訳(メタデータ) (2024-08-18T03:59:57Z) - FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio [45.71036380866305]
我々は、音声を聴く人々の過程を抽象化し、意味のある手がかりを抽出し、単一の音声から動的に音声に一貫性のある発話顔を生成する。
ひとつはアイデンティティ、コンテンツ、感情をエンタングルドオーディオから効果的に切り離すことであり、もう一つは動画内多様性とビデオ間の一貫性を維持することである。
本稿では,3つのトレーニング可能なアダプタと凍結遅延拡散モデルとのフレキシブルな統合を含む,制御可能なコヒーレントフレーム生成を提案する。
論文 参考訳(メタデータ) (2024-03-04T09:59:48Z) - GeneFace++: Generalized and Stable Real-Time Audio-Driven 3D Talking
Face Generation [71.73912454164834]
音声-リップ同期の汎用化, 画質の向上, システム効率の向上が期待できる。
NeRFは、数分間のトレーニングビデオで高忠実で3D一貫性のある会話顔生成を実現することができるため、この分野で一般的な技術となっている。
そこで我々は,これらの課題に対処するためにGeneFace++を提案し,ピッチの輪郭を補助的特徴として利用し,顔の動き予測プロセスに時間的損失を導入する。
論文 参考訳(メタデータ) (2023-05-01T12:24:09Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
マルチモーダル生成モデリングは、テキスト・ツー・イメージとテキスト・ツー・ビデオ生成においてマイルストーンを生み出した。
高品質のテキストオーディオペアを備えた大規模データセットの欠如、長期連続的なオーディオデータのモデリングの複雑さ、という2つの主な理由から、オーディオへの適用は依然として遅れている。
本稿では,これらのギャップに対処する急激な拡散モデルを用いたMake-An-Audioを提案する。
論文 参考訳(メタデータ) (2023-01-30T04:44:34Z) - DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven
Portraits Animation [78.08004432704826]
我々は、音声による時間的コヒーレントな認知過程(DiffTalk)としてのトーキングヘッド生成をモデル化する。
本稿では,話し顔の制御機構について検討し,人格認識型一般化合成の条件として,参照顔画像とランドマークを取り入れた。
我々のDiffTalkは、無視できる余分な計算コストで高分解能な合成に適しています。
論文 参考訳(メタデータ) (2023-01-10T05:11:25Z) - LA-VocE: Low-SNR Audio-visual Speech Enhancement using Neural Vocoders [53.30016986953206]
雑音の多い音声・視覚音声からのメルスペクトルをトランスフォーマーベースアーキテクチャにより予測する2段階のアプローチであるLA-VocEを提案する。
我々は、何千もの話者と11以上の異なる言語でフレームワークを訓練し、評価し、異なるレベルのバックグラウンドノイズや音声干渉に適応するモデルの能力について研究する。
論文 参考訳(メタデータ) (2022-11-20T15:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。