Generative Multi-Target Cross-Domain Recommendation
- URL: http://arxiv.org/abs/2507.12871v3
- Date: Thu, 07 Aug 2025 08:36:01 GMT
- Title: Generative Multi-Target Cross-Domain Recommendation
- Authors: Jinqiu Jin, Yang Zhang, Fuli Feng, Xiangnan He,
- Abstract summary: This paper introduces GMC, a generative paradigm-based approach for multi-target cross-domain recommendation.<n>The core idea of GMC is to leverage semantically quantized discrete item identifiers as a medium for integrating multi-domain knowledge.<n>Extensive experiments on five public datasets demonstrate the effectiveness of GMC.
- Score: 48.54929268144516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a surge of interest in Multi-Target Cross-Domain Recommendation (MTCDR), which aims to enhance recommendation performance across multiple domains simultaneously. Existing MTCDR methods primarily rely on domain-shared entities (\eg users or items) to fuse and transfer cross-domain knowledge, which may be unavailable in non-overlapped recommendation scenarios. Some studies model user preferences and item features as domain-sharable semantic representations, which can be utilized to tackle the MTCDR task. Nevertheless, they often require extensive auxiliary data for pre-training. Developing more effective solutions for MTCDR remains an important area for further exploration. Inspired by recent advancements in generative recommendation, this paper introduces GMC, a generative paradigm-based approach for multi-target cross-domain recommendation. The core idea of GMC is to leverage semantically quantized discrete item identifiers as a medium for integrating multi-domain knowledge within a unified generative model. GMC first employs an item tokenizer to generate domain-shared semantic identifiers for each item, and then formulates item recommendation as a next-token generation task by training a domain-unified sequence-to-sequence model. To further leverage the domain information to enhance performance, we incorporate a domain-aware contrastive loss into the semantic identifier learning, and perform domain-specific fine-tuning on the unified recommender. Extensive experiments on five public datasets demonstrate the effectiveness of GMC compared to a range of baseline methods.
Related papers
- LLM-Enhanced Multimodal Fusion for Cross-Domain Sequential Recommendation [19.654959889052638]
Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains.<n>We propose LLM-Enhanced Multimodal Fusion for Cross-Domain Sequential Recommendation (LLM-EMF)<n>LLM-EMF is a novel and advanced approach that enhances textual information with Large Language Models (LLM) knowledge.
arXiv Detail & Related papers (2025-06-22T09:53:21Z) - LLM-RecG: A Semantic Bias-Aware Framework for Zero-Shot Sequential Recommendation [5.512301280728178]
Zero-shot cross-domain sequential recommendation (ZCDSR) enables predictions in unseen domains without additional training or fine-tuning.<n>Recent advancements in large language models (LLMs) have significantly enhanced ZCDSR by facilitating cross-domain knowledge transfer.<n>We propose a novel semantic bias-aware framework that improves cross-domain alignment at both the item and sequential levels.
arXiv Detail & Related papers (2025-01-31T15:43:21Z) - Cross-domain Recommender Systems via Multimodal Domain Adaptation [2.306402684958048]
Collaborative Filtering (CF) has emerged as one of the most prominent implementation strategies for building recommender systems.<n>Cross-domain CF alleviates the problem of data sparsity by finding a common set of entities (users or items) across the domains.<n>This paper introduces a domain adaptation technique to align the embeddings of entities across domains.
arXiv Detail & Related papers (2023-06-24T07:27:43Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
We propose a Diverse Preference Augmentation framework with multiple source domains based on meta-learning.
We generate diverse ratings in a new domain of interest to handle overfitting on the case of sparse interactions.
These ratings are introduced into the meta-training procedure to learn a preference meta-learner, which produces good generalization ability.
arXiv Detail & Related papers (2022-04-01T10:10:50Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.