Disordered purification phase transition in hybrid random circuits
- URL: http://arxiv.org/abs/2507.12886v1
- Date: Thu, 17 Jul 2025 08:13:26 GMT
- Title: Disordered purification phase transition in hybrid random circuits
- Authors: Kengo Anzai, Hiroaki Matsueda, Yoshihito Kuno,
- Abstract summary: We investigate the effects of spatial modulation on purification phase transitions in a hybrid random Clifford circuit.<n>We find the effect of spatial non-uniformity in measurement probability on purification phase transition.<n>We find that the modulation induces a phase transition, leading to a different pure phase where a short-range quantum entanglement remains.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noise is inevitable in realistic quantum circuits. It arises randomly in space. Inspired by spatial non-uniformity of the noise, we investigate the effects of spatial modulation on purification phase transitions in a hybrid random Clifford circuit. As an efficient observable for extracting quantum entanglement in mixed states, we employ many-body negativity. The behavior of the many-body negativity well characterizes the presence of the purification phase transitions and its criticality. We find the effect of spatial non-uniformity in measurement probability on purification phase transition. The criticality of the purification phase transition changes from that of uniform probability, which is elucidated from the argument of the Harris criterion. The critical correlation length exponent $\nu$ changes from $\nu < 2$ for uniform probability to $\nu > 2$ for spatially modulated probability. We further investigate a setting where two-site random Clifford gate becomes spatially (quasi-)modulated. We find that the modulation induces a phase transition, leading to a different pure phase where a short-range quantum entanglement remains.
Related papers
- Multipassage Landau-Zener tunneling oscillations in transverse/longitudinal dual dressing of atomic qubits [31.874825130479174]
We investigate the time evolution of a non-resonant dressed-atom qubit in an XZ original configuration.<n>The experiments are performed in rubidium and caesium atomic magnetometers.
arXiv Detail & Related papers (2025-06-03T21:10:00Z) - Topological Phase Transitions and Mixed State Order in a Hubbard Quantum Simulator [36.556659404501914]
Topological phase transitions challenge conventional paradigms in many-body physics.<n>We observe such a transition between one-dimensional crystalline symmetry-protected topological phases.<n>Our results demonstrate how topology and information influence quantum phase transitions.
arXiv Detail & Related papers (2025-05-22T17:58:35Z) - Quantum simulation of bubble nucleation across a quantum phase transition [31.874825130479174]
We use a trapped-ion quantum simulator to observe the real-time dynamics of bubble nucleation'' induced by quantum fluctuations.<n>Results demonstrate the power of quantum simulators to probe out-of-equilibrium many-body physics.
arXiv Detail & Related papers (2025-05-14T17:57:25Z) - Phase driven unconventional superradiance phase transition in non-Hermitian cascaded quantum Rabi cavities [0.0]
This study investigates phase-driven symmetry breaking leading to superradiance phase transitions in non-Hermitian quantum Rabi cavities.
We analytically derive the superradiance phase boundary, validated by observables.
We identify phase-driven first- and second-order superradiance phase transitions, focusing on the quantum criticality of the second-order transition.
arXiv Detail & Related papers (2024-06-24T12:13:50Z) - Noise-induced phase transitions in hybrid quantum circuits [3.625262223613696]
In this work, we investigate the effects of quantum noises with size-dependent probabilities $q=p/Lalpha$ where $alpha$ represents the scaling exponent.
We have identified a noise-induced entanglement phase transition from a volume law to a power (area) law in the presence (absence) of measurements.
This unified picture further deepens the understanding of the connection between entanglement behavior and the capacity of information protection.
arXiv Detail & Related papers (2024-01-30T00:03:56Z) - Quantum phases of the biased two-chain-coupled Bose-Hubbard Ladder [0.6086160084025234]
We investigate the quantum phases of bosons in a two-chain-coupled ladder.
We find signatures of both insulating-to-superfluid and super-to-insulating quantum phase transitions.
We show that for infinite interaction bias, the model is amenable to some analytical treatments.
arXiv Detail & Related papers (2023-08-29T05:52:02Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Dynamical transitions from slow to fast relaxation in random open
quantum systems [0.0]
We study a model in which the system Hamiltonian and its couplings to the noise are random matrices whose entries decay as power laws of distance.
The steady state is always featureless, but the rate at which it is approached exhibits three phases depending on $alpha_H$ and $alpha_L$.
Within perturbation theory, the phase boundaries in the $(alpha_H, alpha_L)$ plane differ for weak and strong dissipation, suggesting phase transitions as a function of noise strength.
arXiv Detail & Related papers (2022-11-23T20:56:46Z) - Modelling of spin decoherence in a Si hole qubit perturbed by a single
charge fluctuator [0.0]
We simulate a hole spin qubit in a quantum dot defined electrostatically by a set of gates along a silicon nanowire channel.
We show that dephasing time $T$ is well given by a two-level model in a wide range of frequency.
arXiv Detail & Related papers (2022-10-19T11:35:54Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Measurement-induced purification in large-N hybrid Brownian circuits [0.0]
Competition between unitary dynamics that scrambles quantum information non-locally can result in a measurement-induced entanglement phase transition.
We study this phenomenon in an analytically tractable all-to-all Brownian hybrid circuit model composed of qubits.
arXiv Detail & Related papers (2021-04-15T18:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.