論文の概要: Investigating Forecasting Models for Pandemic Infections Using Heterogeneous Data Sources: A 2-year Study with COVID-19
- arxiv url: http://arxiv.org/abs/2507.12966v1
- Date: Thu, 17 Jul 2025 10:06:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.447423
- Title: Investigating Forecasting Models for Pandemic Infections Using Heterogeneous Data Sources: A 2-year Study with COVID-19
- Title(参考訳): 不均一なデータソースを用いたパンデミック感染症の予測モデルの検討 : COVID-19による2年間の調査
- Authors: Zacharias Komodromos, Kleanthis Malialis, Panayiotis Kolios,
- Abstract要約: 本稿では,キプロスにおける新型コロナウイルスの予測に関する大規模ケーススタディを提案する。
疫学データ、ワクチン接種記録、政策措置、気象条件を統合している。
感染動向を分析し, 予測性能を評価し, 外部因子が疾患動態に及ぼす影響について検討した。
- 参考スコア(独自算出の注目度): 5.442821752066412
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Emerging in December 2019, the COVID-19 pandemic caused widespread health, economic, and social disruptions. Rapid global transmission overwhelmed healthcare systems, resulting in high infection rates, hospitalisations, and fatalities. To minimise the spread, governments implemented several non-pharmaceutical interventions like lockdowns and travel restrictions. While effective in controlling transmission, these measures also posed significant economic and societal challenges. Although the WHO declared COVID-19 no longer a global health emergency in May 2023, its impact persists, shaping public health strategies. The vast amount of data collected during the pandemic offers valuable insights into disease dynamics, transmission, and intervention effectiveness. Leveraging these insights can improve forecasting models, enhancing preparedness and response to future outbreaks while mitigating their social and economic impact. This paper presents a large-scale case study on COVID-19 forecasting in Cyprus, utilising a two-year dataset that integrates epidemiological data, vaccination records, policy measures, and weather conditions. We analyse infection trends, assess forecasting performance, and examine the influence of external factors on disease dynamics. The insights gained contribute to improved pandemic preparedness and response strategies.
- Abstract(参考訳): 2019年12月、新型コロナウイルスのパンデミックにより、健康、経済、社会の混乱が拡大した。
急激なグローバルトランスミッションは医療システムを圧倒し、高い感染率、入院率、死亡率をもたらした。
感染拡大を最小限に抑えるため、政府はロックダウンや旅行制限など、いくつかの非製薬的介入を行った。
伝達を制御するのに効果がある一方で、これらの措置は経済的、社会的に重大な課題を提起した。
WHOは2023年5月に新型コロナウイルスはもはや世界的な健康危機ではないと宣言したが、その影響は継続し、公衆衛生戦略を形作っている。
パンデミックで収集された膨大なデータは、病気のダイナミクス、伝達、介入の有効性に関する貴重な洞察を提供する。
これらの洞察を活用すれば、予測モデルを改善し、将来のアウトブレイクに対する準備と対応を高めつつ、社会的・経済的影響を緩和することができる。
本稿では、疫学データ、ワクチン接種記録、政策措置、気象条件を統合した2年間のデータセットを活用した、キプロスにおける新型コロナウイルスの予測に関する大規模ケーススタディを提案する。
感染動向を分析し, 予測性能を評価し, 外部因子が疾患動態に及ぼす影響について検討した。
この知見はパンデミックの準備と対応戦略の改善に寄与した。
関連論文リスト
- Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
ソーシャルメディア投稿から疫病関連事象を抽出・分析する枠組みを構築した。
実験では、新型コロナウイルスベースのSPEEDで訓練されたEDモデルが、3つの目に見えない流行の流行を効果的に検出する方法が明らかにされている。
モンキーポックスのWHO流行宣言より4~9週間早く,抽出した事象の報告が急激な増加を示すことを示す。
論文 参考訳(メタデータ) (2024-04-02T06:31:17Z) - First 100 days of pandemic; an interplay of pharmaceutical, behavioral
and digital interventions -- A study using agent based modeling [14.192977334409104]
我々は、現実的な薬品、行動、デジタル介入をシミュレートし、現実の政策導入における課題を反映する。
本分析の結果,パンデミックの進行過程を決定する上で,最初の100日間が重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-01-09T19:38:59Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
新型コロナウイルスは、公衆衛生、社会、経済のほぼすべての領域に永続的な被害をもたらしている。
既存の研究は、伝統的な統計モデルと流行拡散理論の集約に依存している。
我々は,抽出した出来事と関係に基づいて,ソーシャルメディアがパンデミックの知識を広める新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-08T15:46:05Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-USは、新型コロナウイルス関連超音波画像データのオープンアクセスベンチマークデータセットです。
肺超音波93本と,SARS-CoV-2肺炎,非SARS-CoV-2肺炎,健康管理症例10,774本からなる。
論文 参考訳(メタデータ) (2021-03-18T03:31:33Z) - Impact of Interventional Policies Including Vaccine on Covid-19
Propagation and Socio-Economic Factors [0.7874708385247353]
本研究の目的は、新型コロナウイルスの伝播と社会経済的影響をモデル化、予測、シミュレーションするための予測分析フレームワークを提供することである。
私たちは最近ローンチしたオープンソースのCOVID-19ビッグデータプラットフォームを活用し、公開研究を使用して潜在的に関連する変数を見つけました。
先進的な機械学習パイプラインは、現代的な機械学習アーキテクチャにデプロイされた自己進化モデルを用いて開発された。
論文 参考訳(メタデータ) (2021-01-11T15:08:07Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
我々は、インフルエンザとCOVID-19が共存する新しいシナリオに、歴史的疾患予測モデルを「操る」ことができる神経伝達学習アーキテクチャであるCALI-Netを提案する。
我々の実験は、現在のパンデミックに歴史的予測モデルを適用することに成功していることを示している。
論文 参考訳(メタデータ) (2020-09-23T22:35:43Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - From predictions to prescriptions: A data-driven response to COVID-19 [42.57407485467993]
新型コロナウイルスの臨床的特徴を理解するための包括的データ駆動型アプローチを提案する。
私たちは、感染や死亡のリスクを予測するために、パーソナライズされた電卓を構築します。
人工呼吸器の再配置と不足軽減のための最適化モデルを提案する。
論文 参考訳(メタデータ) (2020-06-30T03:34:00Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
われわれは、米国内での新型コロナウイルスの感染拡大に対する在宅勤務注文の影響を評価するために、詳細なモビリティデータを用いている。
一方向性グランガー因果性(一方向性グランガー因果性)は、家庭で毎日過ごす時間の割合の中央値から、2週間の遅れを伴うCOVID-19関連死亡件数の日数までである。
論文 参考訳(メタデータ) (2020-06-23T03:36:19Z) - Data-driven Simulation and Optimization for Covid-19 Exit Strategies [16.31545249131776]
コロナウイルスSARS-2の急速な普及は、世界中のほぼ全ての政府が悲劇に対応するために徹底的な対策を講じる大きな課題である。
我々は,疫学パラメータの深層学習推定を組み合わせたパンデミックシミュレーションと予測ツールキットを構築した。
論文 参考訳(メタデータ) (2020-06-12T11:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。