論文の概要: From Variability To Accuracy: Conditional Bernoulli Diffusion Models with Consensus-Driven Correction for Thin Structure Segmentation
- arxiv url: http://arxiv.org/abs/2507.12985v1
- Date: Thu, 17 Jul 2025 10:44:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.456426
- Title: From Variability To Accuracy: Conditional Bernoulli Diffusion Models with Consensus-Driven Correction for Thin Structure Segmentation
- Title(参考訳): 可変性から精度へ:薄膜セグメンテーションのためのコンセンサス駆動補正付き条件ベルヌーイ拡散モデル
- Authors: Jinseo An, Min Jin Lee, Kyu Won Shim, Helen Hong,
- Abstract要約: あいまいな領域では、既存のセグメンテーションアプローチは、しばしば非連結または非分離的な結果を出力する。
本稿では,複数の拡散モデル出力からのコンセンサスを利用してセグメント化結果を補正する新しいフレームワークを提案する。
本手法は,手作業による分割結果の修正を自動化し,画像ガイド下手術計画と手術に応用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate segmentation of orbital bones in facial computed tomography (CT) images is essential for the creation of customized implants for reconstruction of defected orbital bones, particularly challenging due to the ambiguous boundaries and thin structures such as the orbital medial wall and orbital floor. In these ambiguous regions, existing segmentation approaches often output disconnected or under-segmented results. We propose a novel framework that corrects segmentation results by leveraging consensus from multiple diffusion model outputs. Our approach employs a conditional Bernoulli diffusion model trained on diverse annotation patterns per image to generate multiple plausible segmentations, followed by a consensus-driven correction that incorporates position proximity, consensus level, and gradient direction similarity to correct challenging regions. Experimental results demonstrate that our method outperforms existing methods, significantly improving recall in ambiguous regions while preserving the continuity of thin structures. Furthermore, our method automates the manual process of segmentation result correction and can be applied to image-guided surgical planning and surgery.
- Abstract(参考訳): 顔CT画像における軌道骨の正確なセグメンテーションは、欠陥のある軌道骨の再構築のためにカスタマイズされたインプラントを作成するのに不可欠であり、特に不明瞭な境界と軌道中壁や軌道床のような細い構造のために困難である。
これらのあいまいな領域では、既存のセグメンテーションアプローチは、しばしば非連結またはアンダーセグメンテーションの結果を出力する。
本稿では,複数の拡散モデル出力からのコンセンサスを利用してセグメント化結果を補正する新しいフレームワークを提案する。
提案手法では,画像毎の様々なアノテーションパターンに基づいて訓練された条件付きベルヌーイ拡散モデルを用いて,複数の可算セグメンテーションを生成する。
実験により, 本手法は既存手法よりも優れ, 薄型構造物の連続性を保ちながら, あいまいな領域でのリコールを著しく改善することを示した。
さらに,手作業による分割結果の修正を自動化し,画像ガイド下手術計画や手術に応用することができる。
関連論文リスト
- UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model [53.34835793648352]
病変分割のための新しい拡散モデルフレームワークUniSegDiffを提案する。
UniSegDiffは、複数のモダリティと臓器にまたがる統一された方法で病変のセグメンテーションに対処する。
総合的な実験結果から、UniSegDiffは従来のSOTA(State-of-the-art)アプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2025-07-24T12:33:10Z) - MAMBO-NET: Multi-Causal Aware Modeling Backdoor-Intervention Optimization for Medical Image Segmentation Network [51.68708264694361]
融合因子は、複雑な解剖学的変異や画像のモダリティ制限などの医療画像に影響を与える可能性がある。
医用画像セグメンテーションのためのバックドア・インターベンション最適化ネットワークを提案する。
本手法は, 混乱要因の影響を著しく低減し, セグメンテーション精度を向上させる。
論文 参考訳(メタデータ) (2025-05-28T01:40:10Z) - DGSSA: Domain generalization with structural and stylistic augmentation for retinal vessel segmentation [17.396365010722423]
網膜血管形態は糖尿病、緑内障、高血圧などの疾患の診断に重要である。
従来のセグメンテーション手法は、トレーニングとテストのデータが同様の分布を共有していると仮定する。
本稿では,網膜血管画像分割のための新しいアプローチ DGSSA を提案する。
論文 参考訳(メタデータ) (2025-01-07T01:47:57Z) - Structure-Aware Stylized Image Synthesis for Robust Medical Image Segmentation [10.776242801237862]
本稿では,拡散モデルと構造保存ネットワークを組み合わせた新しい医用画像分割手法を提案する。
本手法は, 病変の位置, サイズ, 形状を維持しつつ, 様々なソースからの画像を一貫したスタイルに変換することで, 領域シフトを効果的に軽減する。
論文 参考訳(メタデータ) (2024-12-05T16:15:32Z) - CriDiff: Criss-cross Injection Diffusion Framework via Generative Pre-train for Prostate Segmentation [60.61972883059688]
CridiffはCrisscross Injection Strategy(CIS)とGenerative Pre-train(GP)アプローチによる2段階の機能注入フレームワークである。
CISでは,複数レベルのエッジ特徴と非エッジ特徴を効果的に学習するために,並列コンディショナーを2つ提案した。
GPアプローチは、追加パラメータを追加することなく、画像特徴と拡散モデルとの矛盾を緩和する。
論文 参考訳(メタデータ) (2024-06-20T10:46:50Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model [7.021021047695508]
病理組織像のセグメンテーション結果を生成するためのコントラストモデルを提案する。
本手法は,病理組織像における対象領域の共通特性を考察し,エンドツーエンドで訓練することができる。
より地域的に一貫性があり、スムーズな境界セグメンテーションを生成することができ、未ラベルの新規領域に対してより堅牢である。
論文 参考訳(メタデータ) (2023-04-07T10:12:21Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
サイクル一貫性のある生成共役ネットワークは、ソースとターゲットドメイン間のイメージセットの調和に使われてきた。
これらの手法は、不安定性、コントラストの逆転、病理の難治性操作、および実際の医用画像における信頼性を制限したステガノグラフィーマッピングの傾向が強い。
解剖学的レイアウトを維持しながらスキャナ間の調和を低減するセグメンテーション正規化画像翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-11T23:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。