論文の概要: Structure-Aware Stylized Image Synthesis for Robust Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2412.04296v1
- Date: Thu, 05 Dec 2024 16:15:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:39.455764
- Title: Structure-Aware Stylized Image Synthesis for Robust Medical Image Segmentation
- Title(参考訳): ロバストな医用画像分割のための構造対応スティル化画像合成
- Authors: Jie Bao, Zhixin Zhou, Wen Jung Li, Rui Luo,
- Abstract要約: 本稿では,拡散モデルと構造保存ネットワークを組み合わせた新しい医用画像分割手法を提案する。
本手法は, 病変の位置, サイズ, 形状を維持しつつ, 様々なソースからの画像を一貫したスタイルに変換することで, 領域シフトを効果的に軽減する。
- 参考スコア(独自算出の注目度): 10.776242801237862
- License:
- Abstract: Accurate medical image segmentation is essential for effective diagnosis and treatment planning but is often challenged by domain shifts caused by variations in imaging devices, acquisition conditions, and patient-specific attributes. Traditional domain generalization methods typically require inclusion of parts of the test domain within the training set, which is not always feasible in clinical settings with limited diverse data. Additionally, although diffusion models have demonstrated strong capabilities in image generation and style transfer, they often fail to preserve the critical structural information necessary for precise medical analysis. To address these issues, we propose a novel medical image segmentation method that combines diffusion models and Structure-Preserving Network for structure-aware one-shot image stylization. Our approach effectively mitigates domain shifts by transforming images from various sources into a consistent style while maintaining the location, size, and shape of lesions. This ensures robust and accurate segmentation even when the target domain is absent from the training data. Experimental evaluations on colonoscopy polyp segmentation and skin lesion segmentation datasets show that our method enhances the robustness and accuracy of segmentation models, achieving superior performance metrics compared to baseline models without style transfer. This structure-aware stylization framework offers a practical solution for improving medical image segmentation across diverse domains, facilitating more reliable clinical diagnoses.
- Abstract(参考訳): 正確な医用画像のセグメンテーションは効果的な診断と治療計画に不可欠であるが、画像装置のバリエーション、取得条件、患者固有の属性によって引き起こされる領域シフトによってしばしば挑戦される。
従来のドメインの一般化手法では、トレーニングセットにテストドメインの一部を含める必要があり、多様なデータしか持たない臨床環境では必ずしも実現できない。
さらに、拡散モデルは画像生成やスタイル転送において強力な機能を示すが、正確な医療分析に必要な重要な構造情報を保存できないことが多い。
これらの課題に対処するために,拡散モデルと構造保存ネットワークを組み合わせた新しい医用画像分割手法を提案する。
本手法は, 病変の位置, サイズ, 形状を維持しつつ, 様々なソースからの画像を一貫したスタイルに変換することで, 領域シフトを効果的に軽減する。
これにより、目標ドメインがトレーニングデータから外れた場合でも、堅牢で正確なセグメンテーションが保証される。
大腸内視鏡ポリープ分割と皮膚病変セグメンテーションデータセットを実験的に評価したところ,本手法はセグメンテーションモデルの堅牢性と精度を高め,スタイル移行のないベースラインモデルと比較して優れた性能測定値が得られることがわかった。
この構造認識型スタイリングフレームワークは、様々な領域にわたる医用画像のセグメンテーションを改善するための実用的なソリューションを提供し、より信頼性の高い臨床診断を容易にする。
関連論文リスト
- Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
マルチモーダル血管セグメンテーションのための小型血管拡張と形態的補正を取り入れた構造診断手法を提案する。
本手法は,より優れたセグメンテーション精度,一般化,34.6%の接続性向上を実現し,臨床応用の可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T08:38:30Z) - Segment as You Wish -- Free-Form Language-Based Segmentation for Medical Images [30.673958586581904]
フリーフォームなテキストプロンプトを処理する新しい医用画像セグメンテーションモデルであるFLanSを紹介する。
FLanSは、7つの公開データセットから100万以上の医療画像の大規模なデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2024-10-02T16:34:32Z) - Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
論文 参考訳(メタデータ) (2024-08-01T07:35:54Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-04-01T17:48:15Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Contrastive Registration for Unsupervised Medical Image Segmentation [1.5125686694430571]
非教師型医用画像分割のための新しいコントラスト型登録アーキテクチャを提案する。
まず、教師なしの医用画像セグメントの登録により、画像から画像への変換パターンをキャプチャするアーキテクチャを提案する。
第2に,特徴レベルのネットワークの識別能力を高めるために,コントラスト学習機構を登録アーキテクチャに組み込む。
論文 参考訳(メタデータ) (2020-11-17T19:29:08Z) - Cross-Domain Medical Image Translation by Shared Latent Gaussian Mixture
Model [10.05036157409819]
クロスドメイン画像解析ツールは、実世界の臨床応用において高い需要がある。
現在のディープラーニングベースのセグメンテーションモデルは、訓練データ不足のため、ドメイン間でのセグメンテーションが不十分であることが多い。
医用画像翻訳中に微細構造を保存するために,ガウス混合モデルから共用潜伏変数を用いたパッチベースモデルを提案する。
論文 参考訳(メタデータ) (2020-07-14T17:48:44Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
前立腺MRIのセグメント化におけるモデル一般化を改善するために,新しい形状認識メタラーニング手法を提案する。
実験結果から,本手法は未確認領域の6つの設定すべてにおいて,最先端の一般化手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-04T07:56:02Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。