論文の概要: Exploiting Constraint Reasoning to Build Graphical Explanations for Mixed-Integer Linear Programming
- arxiv url: http://arxiv.org/abs/2507.13007v1
- Date: Thu, 17 Jul 2025 11:25:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.468824
- Title: Exploiting Constraint Reasoning to Build Graphical Explanations for Mixed-Integer Linear Programming
- Title(参考訳): 混合整数線形計画法のための図式記述構築のための制約の爆発的推論
- Authors: Roger Xavier Lera-Leri, Filippo Bistaffa, Athina Georgara, Juan Antonio Rodriguez-Aguilar,
- Abstract要約: X-MILPは、MILPの対照的な説明を構築するためのドメインに依存しないアプローチである。
まず、ユーザがMILP問題の解に対して行うクエリを、追加制約としてエンコードする方法を示す。
そして, 利用者の問合せに対する回答を構成する理由を, 既約不実用サブシステム (IIS) の計算により決定する。
- 参考スコア(独自算出の注目度): 0.6749750044497732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following the recent push for trustworthy AI, there has been an increasing interest in developing contrastive explanation techniques for optimisation, especially concerning the solution of specific decision-making processes formalised as MILPs. Along these lines, we propose X-MILP, a domain-agnostic approach for building contrastive explanations for MILPs based on constraint reasoning techniques. First, we show how to encode the queries a user makes about the solution of an MILP problem as additional constraints. Then, we determine the reasons that constitute the answer to the user's query by computing the Irreducible Infeasible Subsystem (IIS) of the newly obtained set of constraints. Finally, we represent our explanation as a "graph of reasons" constructed from the IIS, which helps the user understand the structure among the reasons that answer their query. We test our method on instances of well-known optimisation problems to evaluate the empirical hardness of computing explanations.
- Abstract(参考訳): 信頼に値するAIを求める最近の動きに続いて、特にMILPとして形式化された特定の意思決定プロセスのソリューションに関して、最適化のための対照的な説明手法の開発への関心が高まっている。
これらの線に沿って、制約推論技術に基づくMILPの対照的な説明を構築するためのドメインに依存しないアプローチであるX-MILPを提案する。
まず、ユーザがMILP問題の解に対して行うクエリを、追加制約としてエンコードする方法を示す。
そこで,新たに得られた制約セットのIrreducible Infeasible Subsystem (IIS) を計算することにより,ユーザの質問に対する回答を構成する理由を決定する。
最後に、この説明をIISから構築された「理由のグラフ」として表現し、ユーザがクエリに答える理由の1つとして構造を理解するのに役立つ。
本手法は、よく知られた最適化問題の例を用いて、計算説明の実証的難しさを評価する。
関連論文リスト
- PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThinkは、外部から推定されるタスクの難しさと内部で測定されたモデルの不確実性を統合する、シンプルで効果的なスキームである。
シーンの複雑さと予測信頼度に応じて推論の長さを圧縮することを学ぶ。
実験により,提案手法は推論効率と全体セグメンテーション性能の両方を改善した。
論文 参考訳(メタデータ) (2025-05-29T17:55:49Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - Finding Counterfactual Explanations through Constraint Relaxations [6.961253535504979]
インタラクティブな制約システムは、しばしばユーザーの制約が矛盾するため、実現不可能(解決策がない)に悩まされる。
不実現性を取り戻すための一般的なアプローチは、システム内の衝突を引き起こす制約を取り除くことである。
本稿では,過度に制約された制約満足度問題における競合検出と最大緩和に基づく反復的手法を提案する。
論文 参考訳(メタデータ) (2022-04-07T13:18:54Z) - Lifting Symmetry Breaking Constraints with Inductive Logic Programming [2.036811219647753]
我々は、Symmetry Breaking Constraintsを解釈可能な一階制約の集合に引き上げる、Answer Set Programmingのための新しいモデル指向のアプローチを導入する。
実験は、我々のフレームワークがインスタンス固有のSBCから一般的な制約を学習できることを実証する。
論文 参考訳(メタデータ) (2021-12-22T11:27:48Z) - Counterfactual Explanations in Sequential Decision Making Under
Uncertainty [27.763369810430653]
本研究では, 逐次的意思決定プロセスにおいて, 対実的説明を求める手法を開発した。
我々の問題定式化において、反実的説明は、少なくとも k 個の作用において異なる作用の別の列を特定する。
提案アルゴリズムは,不確実性の下での意思決定の促進に有用な洞察を与えることができることを示す。
論文 参考訳(メタデータ) (2021-07-06T17:38:19Z) - Regret Analysis in Deterministic Reinforcement Learning [78.31410227443102]
本稿では,最適学習アルゴリズムの分析と設計の中心となる後悔の問題を考察する。
本稿では,システムパラメータに明示的に依存する対数問題固有の後悔の下位境界について述べる。
論文 参考訳(メタデータ) (2021-06-27T23:41:57Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
我々は,複雑な質問をより単純な質問に分解する手法を提案する。
事前定義された推論テンプレートの指示に従って最終回答を導出する。
我々のアプローチは、解釈可能でありながら最先端技術と競合し、監督をほとんど必要としないことを示す。
論文 参考訳(メタデータ) (2021-04-05T18:56:56Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
本稿では,POMCPポリシーをトレースを検査して分析する手法を提案する。
提案手法は, 政策行動の局所的特性を探索し, 予期せぬ決定を識別する。
我々は,POMDPの標準ベンチマークであるTigerに対するアプローチと,移動ロボットナビゲーションに関する現実の問題を評価した。
論文 参考訳(メタデータ) (2020-12-23T15:09:28Z) - A framework for step-wise explaining how to solve constraint
satisfaction problems [21.96171133035504]
本研究では,人に対する理解が容易な方法で,伝播時に行うことができる推論ステップを説明することの課題について検討する。
そこで我々は, 制約解決者説明可能な機関を提供することを目標とし, 問題解決者への信頼構築に役立てる。
論文 参考訳(メタデータ) (2020-06-11T11:35:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。