RS-TinyNet: Stage-wise Feature Fusion Network for Detecting Tiny Objects in Remote Sensing Images
- URL: http://arxiv.org/abs/2507.13120v1
- Date: Thu, 17 Jul 2025 13:34:21 GMT
- Title: RS-TinyNet: Stage-wise Feature Fusion Network for Detecting Tiny Objects in Remote Sensing Images
- Authors: Xiaozheng Jiang, Wei Zhang, Xuerui Mao,
- Abstract summary: We introduce RS-TinyNet, a multi-stage feature fusion and enhancement model specifically tailored for tiny object detection in various RS scenarios.<n> RS-TinyNet comes with two novel designs: tiny object saliency modeling and feature integrity reconstruction.<n>Our experiments show that RS-TinyNet surpasses existing state-of-the-art (SOTA) detectors by 4.0% AP and 6.5% AP75.
- Score: 3.305346506291318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting tiny objects in remote sensing (RS) imagery has been a long-standing challenge due to their extremely limited spatial information, weak feature representations, and dense distributions across complex backgrounds. Despite numerous efforts devoted, mainstream detectors still underperform in such scenarios. To bridge this gap, we introduce RS-TinyNet, a multi-stage feature fusion and enhancement model explicitly tailored for RS tiny object detection in various RS scenarios. RS-TinyNet comes with two novel designs: tiny object saliency modeling and feature integrity reconstruction. Guided by these principles, we design three step-wise feature enhancement modules. Among them, the multi-dimensional collaborative attention (MDCA) module employs multi-dimensional attention to enhance the saliency of tiny objects. Additionally, the auxiliary reversible branch (ARB) and a progressive fusion detection head (PFDH) module are introduced to preserve information flow and fuse multi-level features to bridge semantic gaps and retain structural detail. Comprehensive experiments on public RS dataset AI-TOD show that our RS-TinyNet surpasses existing state-of-the-art (SOTA) detectors by 4.0% AP and 6.5% AP75. Evaluations on DIOR benchmark dataset further validate its superior detection performance in diverse RS scenarios. These results demonstrate that the proposed multi-stage feature fusion strategy offers an effective and practical solution for tiny object detection in complex RS environments.
Related papers
- MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection [10.135137525886098]
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance.<n>Existing multi-scale fusion methods help, but add computational burden and blur fine details.<n>We propose a unified fusion framework that tightly couples global context with local detail to boost detection performance.
arXiv Detail & Related papers (2025-06-15T02:54:25Z) - AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
arXiv Detail & Related papers (2025-05-21T07:02:05Z) - MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection [0.1759252234439348]
This paper proposes a network architecture named MSCA-Net, which integrates three key components.<n>MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales.<n>PCBAM captures the correlation between global and local features through a correlation matrix-based strategy.<n> CAB enhances the representation of critical features by assigning greater weights to them, integrating both low-level and high-level information.
arXiv Detail & Related papers (2025-03-21T14:42:31Z) - OpenRSD: Towards Open-prompts for Object Detection in Remote Sensing Images [45.40710102095654]
We propose OpenRSD, a universal open-prompt RS object detection framework.<n>OpenRSD supports multimodal prompts and integrates multi-task detection heads to balance accuracy and real-time requirements.<n>Compared to YOLO-World, OpenRSD exhibits an 8.7% higher average precision and achieves an inference speed of 20.8 FPS.
arXiv Detail & Related papers (2025-03-08T10:08:46Z) - Generalization-Enhanced Few-Shot Object Detection in Remote Sensing [22.411751110592842]
Few-shot object detection (FSOD) targets object detection challenges in data-limited conditions.<n>We propose the Generalization-Enhanced Few-Shot Object Detection (GE-FSOD) model to improve the generalization capability in remote sensing tasks.<n>Our model introduces three key innovations: the Cross-Level Fusion Pyramid Attention Network (CFPAN), the Multi-Stage Refinement Region Proposal Network (MRRPN), and the Generalized Classification Loss (GCL)
arXiv Detail & Related papers (2025-01-05T08:12:25Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - RS-DFM: A Remote Sensing Distributed Foundation Model for Diverse Downstream Tasks [11.681342476516267]
We propose a Remote Distributed Sensing Foundation Model (RS-DFM) based on generalized information mapping and interaction.
This model can realize online collaborative perception across multiple platforms and various downstream tasks.
We present a dual-branch information compression module to decouple high-frequency and low-frequency feature information.
arXiv Detail & Related papers (2024-06-11T07:46:47Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.