論文の概要: Detecting LLM-generated Code with Subtle Modification by Adversarial Training
- arxiv url: http://arxiv.org/abs/2507.13123v1
- Date: Thu, 17 Jul 2025 13:38:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.522907
- Title: Detecting LLM-generated Code with Subtle Modification by Adversarial Training
- Title(参考訳): 副次的学習による部分修正によるLLM生成符号の検出
- Authors: Xin Yin, Xinrui Li, Chao Ni, Xiaodan Xu, Xiaohu Yang,
- Abstract要約: 我々は,入力摂動に対する頑健性を改善するために,敵のトレーニングを利用するCodeGPTSensorの強化版を提案する。
HMCorpデータセットの実験結果から,CodeGPTSensor+は対向テストセットの検出精度を大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 4.814313782484443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of Large Language Models (LLMs), their powerful code-generation capabilities have been widely applied in tasks like code completion and automated development, demonstrating the value of improving coding efficiency. However, the extensive use of LLM-generated code also raises several new challenges. On the one hand, issues such as the regulation of code provenance, copyright disputes, and code quality have become increasingly concerning. How to effectively detect LLM-generated code and ensure its compliant and responsible use has become a critical and urgent issue. On the other hand, in practical applications, LLM-generated code is often subject to manual modifications, such as variable renaming or structural adjustments. Although some recent studies have proposed training-based and zero-shot methods for detecting LLM-generated code, these approaches show insufficient robustness when facing modified LLM-generated code, and there is a lack of an effective solution. To address the real-world scenario where LLM-generated code may undergo minor modifications, we propose CodeGPTSensor+, an enhanced version of CodeGPTSensor, which employs adversarial training to improve robustness against input perturbations. CodeGPTSensor+ integrates an adversarial sample generation module, Multi-objective Identifier and Structure Transformation (MIST), which systematically generates both high-quality and representative adversarial samples. This module effectively enhances the model's resistance against diverse adversarial attacks. Experimental results on the HMCorp dataset demonstrate that CodeGPTSensor+ significantly improves detection accuracy on the adversarial test set while maintaining high accuracy on the original test set, showcasing superior robustness compared to CodeGPTSensor.
- Abstract(参考訳): LLM(Large Language Models)の急速な開発により、その強力なコード生成機能は、コード補完や自動開発といったタスクに広く適用され、コーディング効率を改善する価値が示されています。
しかし、LLM生成コードの広範な使用は、いくつかの新しい課題も提起している。
一方で、コードプロファイランスの規制、著作権紛争、コード品質といった問題もますます懸念されている。
LLM生成コードを効果的に検出し、そのコンプライアンスと責任のある使用を確実にすることは、重要かつ緊急な問題となっている。
一方、実用的応用においては、LSM生成コードは、変数のリネームや構造的な調整といった手動で修正されることが多い。
近年の研究では、LLM生成コードを検出するためのトレーニングベースおよびゼロショット法が提案されているが、これらの手法は、修正LLM生成コードに直面すると、不十分な堅牢性を示し、効果的な解決策がない。
LLM生成したコードが小さな修正を行うような現実のシナリオに対処するために,CodeGPTSensorの強化版であるCodeGPTSensor+を提案する。
CodeGPTSensor+は、多目的識別と構造変換 (MIST) という対向サンプル生成モジュールを統合し、高品質な対向サンプルと代表的な対向サンプルの両方を体系的に生成する。
このモジュールは、様々な敵攻撃に対するモデルの抵抗を効果的に強化する。
HMCorpデータセットを用いた実験結果から,CodeGPTSensor+は元のテストセットの精度を維持しつつ,対向テストセットの検出精度を著しく向上し,CodeGPTSensorと比較して優れた堅牢性を示した。
関連論文リスト
- CodeVision: Detecting LLM-Generated Code Using 2D Token Probability Maps and Vision Models [28.711745671275477]
大規模言語モデル(LLM)の台頭により、自動コード生成が大幅に改善され、ソフトウェア開発の効率が向上した。
事前訓練されたモデルや透かしなどの既存の検出方法は、適応性と計算効率の制限に直面している。
本稿では,視覚モデルと組み合わせた2次元トークン確率マップを用いた新しい検出手法を提案する。
論文 参考訳(メタデータ) (2025-01-06T06:15:10Z) - What You See Is Not Always What You Get: An Empirical Study of Code Comprehension by Large Language Models [0.5735035463793009]
ソースコードに隠された文字操作がLLMの動作を誤認し,人間のレビュアーには検出不能なままにしておくという,大きな言語モデル(LLM)の攻撃に対する脆弱性について検討する。
これらの攻撃には、コードリオーダー、見えないコーディング文字、コード削除、コードホモグリフが含まれる。
以上の結果より,LLMは摂動の大きさと性能に異なる負の相関性を示す一方,LLMは認識不能なコードキャラクタ攻撃に対する感受性を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-12-11T04:52:41Z) - Fine-Tuning LLMs for Code Mutation: A New Era of Cyber Threats [0.9208007322096533]
本稿では,コード変異の文脈におけるLarge Language Modelsの適用について検討する。
伝統的に、ミッションクリティカルなアプリケーションにおいて、ソフトウェアの堅牢性を高めるためにコード突然変異が使われてきた。
事前学習したLLMベースのコードシンセサイザーに適したコード突然変異訓練の新たな定義を提案する。
論文 参考訳(メタデータ) (2024-10-29T17:43:06Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - An Effective Approach to Embedding Source Code by Combining Large Language and Sentence Embedding Models [6.976968804436321]
本稿では,大言語と文埋め込みモデルを組み合わせた新しいソースコード埋め込み手法を提案する。
提案手法の性能を評価するため,異なるプログラミング言語を用いた3つのデータセットについて一連の実験を行った。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Validating LLM-Generated Programs with Metamorphic Prompt Testing [8.785973653167112]
大規模言語モデル(LLM)は、ソフトウェア開発ライフサイクルにますます統合されています。
本稿では,これらの課題に対処するため,メタモルフィック・プロンプト・テストと呼ばれる新しい手法を提案する。
我々のHumanEvalに対する評価は,GPT-4が生成する誤プログラムの75%を,偽陽性率8.6%で検出できることを示す。
論文 参考訳(メタデータ) (2024-06-11T00:40:17Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Fixing Large Language Models' Specification Misunderstanding for Better Code Generation [13.494822086550604]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - Contrastive Decoding Improves Reasoning in Large Language Models [55.16503283583076]
コントラストデコーディングは,様々な推論タスクにおいて,グリージーデコーディングよりもアウト・オブ・ボックスの大幅な改善を実現することを示す。
本稿では,LLaMA-65BがHellaSwag Commonsense reasoning benchmark上でLLaMA 2, GPT-3.5, PaLM 2-Lより優れていることを示す。
論文 参考訳(メタデータ) (2023-09-17T00:29:32Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。