論文の概要: Adversarial attacks to image classification systems using evolutionary algorithms
- arxiv url: http://arxiv.org/abs/2507.13136v1
- Date: Thu, 17 Jul 2025 13:57:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.526019
- Title: Adversarial attacks to image classification systems using evolutionary algorithms
- Title(参考訳): 進化的アルゴリズムを用いた画像分類システムに対する逆攻撃
- Authors: Sergio Nesmachnow, Jamal Toutouh,
- Abstract要約: 本稿では,進化的アルゴリズムと生成的逆数ネットワークの組み合わせを用いて,画像分類器に対する逆数攻撃を生成する手法について検討する。
提案手法は, 逆数攻撃を表すベクトルを求める進化的アルゴリズムを用いて, 生成逆数ネットワークの潜伏空間を探索する。
その結果,手書き文字では最大35%,オブジェクト画像では最大75%が成功率を示した。
- 参考スコア(独自算出の注目度): 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image classification currently faces significant security challenges due to adversarial attacks, which consist of intentional alterations designed to deceive classification models based on artificial intelligence. This article explores an approach to generate adversarial attacks against image classifiers using a combination of evolutionary algorithms and generative adversarial networks. The proposed approach explores the latent space of a generative adversarial network with an evolutionary algorithm to find vectors representing adversarial attacks. The approach was evaluated in two case studies corresponding to the classification of handwritten digits and object images. The results showed success rates of up to 35% for handwritten digits, and up to 75% for object images, improving over other search methods and reported results in related works. The applied method proved to be effective in handling data diversity on the target datasets, even in problem instances that presented additional challenges due to the complexity and richness of information.
- Abstract(参考訳): 現在、画像分類は、人工知能に基づく分類モデルを欺く意図的な変更を含む敵の攻撃により、重大なセキュリティ上の課題に直面している。
本稿では,進化的アルゴリズムと生成的逆数ネットワークの組み合わせを用いて,画像分類器に対する逆数攻撃を生成する手法について検討する。
提案手法は, 逆数攻撃を表すベクトルを求める進化的アルゴリズムを用いて, 生成逆数ネットワークの潜伏空間を探索する。
本手法は手書き桁と対象画像の分類に対応する2つのケーススタディで評価された。
その結果,手書きディジットで最大35%,オブジェクト画像で最大75%,検索方法の改善,関連研究における報告結果が得られた。
適用された手法は,情報の複雑さと豊かさによって新たな課題がもたらされた問題事例においても,対象データセットにおけるデータの多様性を扱うのに有効であることが証明された。
関連論文リスト
- Adversarial Attack Against Images Classification based on Generative Adversarial Networks [0.0]
画像分類システムに対するアドリアック攻撃は、機械学習分野において常に重要な問題であった。
生成的敵ネットワークの普及に伴い、フェイク画像技術の誤用によりセキュリティ上の問題が相次いだ。
本研究は, 画像分類システムの弱点を把握し, 対人攻撃能力を向上させることを目的とした, 新たな対人攻撃手法を提案する。
論文 参考訳(メタデータ) (2024-12-21T15:23:34Z) - Self-Supervised Representation Learning for Adversarial Attack Detection [6.528181610035978]
教師付き学習に基づく敵攻撃検出手法は,多数のラベル付きデータに依存している。
この欠点に対処するために、敵攻撃検出タスクのための自己教師付き表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T09:37:16Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
本稿では,GAN(Generative Adrial Networks)を基盤として,画像から画像への変換を利用した統合フレームワークを提案する。
これは、分類器と識別器を1つのモデルに組み合わせて、実際の画像をそれぞれのクラスに属性付け、生成されたイメージを「フェイク」として生成することで達成される。
モデルが敵攻撃に対するロバスト性の向上を示すことを示すとともに,判別器の「フェイクネス」値が予測の不確かさの指標となることを示す。
論文 参考訳(メタデータ) (2023-10-01T18:50:29Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Uncertainty-based Detection of Adversarial Attacks in Semantic
Segmentation [16.109860499330562]
本稿では,セマンティックセグメンテーションにおける敵攻撃検出のための不確実性に基づくアプローチを提案する。
本研究は,複数種類の敵対的攻撃を対象とする摂動画像の検出能力を示す。
論文 参考訳(メタデータ) (2023-05-22T08:36:35Z) - Deviations in Representations Induced by Adversarial Attacks [0.0]
研究によると、ディープラーニングモデルは敵の攻撃に弱い。
この発見は研究の新たな方向性をもたらし、脆弱性のあるネットワークを攻撃して防御するためにアルゴリズムが開発された。
本稿では,敵攻撃によって引き起こされる表現の偏差を計測し,解析する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T17:40:08Z) - Identification of Attack-Specific Signatures in Adversarial Examples [62.17639067715379]
異なる攻撃アルゴリズムは, その効果だけでなく, 被害者の質的な影響も示している。
以上の結果から, 予測的対人攻撃は, 模擬モデルにおける成功率だけでなく, 被害者に対するより深い下流効果によって比較されるべきであることが示唆された。
論文 参考訳(メタデータ) (2021-10-13T15:40:48Z) - Deep Image Destruction: A Comprehensive Study on Vulnerability of Deep
Image-to-Image Models against Adversarial Attacks [104.8737334237993]
本稿では,敵対的攻撃に対する深部画像対画像モデルの脆弱性に関する包括的調査を行う。
一般的な5つの画像処理タスクでは、さまざまな観点から16の深いモデルが分析される。
画像分類タスクとは異なり、画像間タスクの性能劣化は様々な要因によって大きく異なることが示される。
論文 参考訳(メタデータ) (2021-04-30T14:20:33Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。