Assessing the Reliability of LLMs Annotations in the Context of Demographic Bias and Model Explanation
- URL: http://arxiv.org/abs/2507.13138v2
- Date: Sat, 26 Jul 2025 13:12:12 GMT
- Title: Assessing the Reliability of LLMs Annotations in the Context of Demographic Bias and Model Explanation
- Authors: Hadi Mohammadi, Tina Shahedi, Pablo Mosteiro, Massimo Poesio, Ayoub Bagheri, Anastasia Giachanou,
- Abstract summary: This study investigates the extent to which annotator demographic features influence labeling decisions compared to text content.<n>Using a Generalized Linear Mixed Model, we quantify this inf luence, finding that demographic factors account for a minor fraction ( 8%) of the observed variance.<n>We then assess the reliability of Generative AI (GenAI) models as annotators, specifically evaluating if guiding them with demographic personas improves alignment with human judgments.
- Score: 5.907945985868999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the sources of variability in annotations is crucial for developing fair NLP systems, especially for tasks like sexism detection where demographic bias is a concern. This study investigates the extent to which annotator demographic features influence labeling decisions compared to text content. Using a Generalized Linear Mixed Model, we quantify this inf luence, finding that while statistically present, demographic factors account for a minor fraction ( 8%) of the observed variance, with tweet content being the dominant factor. We then assess the reliability of Generative AI (GenAI) models as annotators, specifically evaluating if guiding them with demographic personas improves alignment with human judgments. Our results indicate that simplistic persona prompting often fails to enhance, and sometimes degrades, performance compared to baseline models. Furthermore, explainable AI (XAI) techniques reveal that model predictions rely heavily on content-specific tokens related to sexism, rather than correlates of demographic characteristics. We argue that focusing on content-driven explanations and robust annotation protocols offers a more reliable path towards fairness than potentially persona simulation.
Related papers
- Interpreting Social Bias in LVLMs via Information Flow Analysis and Multi-Round Dialogue Evaluation [1.7997395646080083]
Large Vision Language Models (LVLMs) have achieved remarkable progress in multimodal tasks, yet they also exhibit notable social biases.<n>We propose an explanatory framework that combines information flow analysis with multi-round dialogue evaluation.<n>Experiments reveal that LVLMs exhibit systematic disparities in information usage when processing images of different demographic groups.
arXiv Detail & Related papers (2025-05-27T12:28:44Z) - Biased Heritage: How Datasets Shape Models in Facial Expression Recognition [13.77824359359967]
We study bias propagation from datasets to trained models in image-based Facial Expression Recognition systems.<n>We introduce new bias metrics specifically designed for multiclass problems with multiple demographic groups.<n>Our findings suggest that preventing emotion-specific demographic patterns should be prioritized over general demographic balance in FER datasets.
arXiv Detail & Related papers (2025-03-05T12:25:22Z) - On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [68.62012304574012]
multimodal generative models have sparked critical discussions on their reliability, fairness and potential for misuse.<n>We propose an evaluation framework to assess model reliability by analyzing responses to global and local perturbations in the embedding space.<n>Our method lays the groundwork for detecting unreliable, bias-injected models and tracing the provenance of embedded biases.
arXiv Detail & Related papers (2024-11-21T09:46:55Z) - Robustness and Confounders in the Demographic Alignment of LLMs with Human Perceptions of Offensiveness [10.194622474615462]
Large language models (LLMs) are known to exhibit demographic biases, yet few studies systematically evaluate these biases across multiple datasets or account for confounding factors.
Our findings reveal that while demographic traits, particularly race, influence alignment, these effects are inconsistent across datasets and often entangled with other factors.
arXiv Detail & Related papers (2024-11-13T19:08:23Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.<n>FAST surpasses state-of-the-art baselines with superior debiasing performance.<n>This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
General-purpose vision-language model (VLM) is a rich knowledge source for common sensitive attributes.
We analyze the correspondence between VLM predicted and human defined sensitive attribute distribution.
Experiments on multiple benchmark facial attribute classification datasets show fairness gains of the model over existing unsupervised baselines.
arXiv Detail & Related papers (2024-03-15T18:37:15Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Leveraging Community and Author Context to Explain the Performance and
Bias of Text-Based Deception Detection Models [6.428095289290804]
Deceptive news posts shared in online communities can be detected with NLP models.
We use characteristics of online communities and authors to explain the performance of a neural network deception detection model.
arXiv Detail & Related papers (2021-04-27T21:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.