Leveraging Community and Author Context to Explain the Performance and
Bias of Text-Based Deception Detection Models
- URL: http://arxiv.org/abs/2104.13490v1
- Date: Tue, 27 Apr 2021 21:49:34 GMT
- Title: Leveraging Community and Author Context to Explain the Performance and
Bias of Text-Based Deception Detection Models
- Authors: Galen Weld, Ellyn Ayton, Tim Althoff, and Maria Glenski
- Abstract summary: Deceptive news posts shared in online communities can be detected with NLP models.
We use characteristics of online communities and authors to explain the performance of a neural network deception detection model.
- Score: 6.428095289290804
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deceptive news posts shared in online communities can be detected with NLP
models, and much recent research has focused on the development of such models.
In this work, we use characteristics of online communities and authors -- the
context of how and where content is posted -- to explain the performance of a
neural network deception detection model and identify sub-populations who are
disproportionately affected by model accuracy or failure. We examine who is
posting the content, and where the content is posted to. We find that while
author characteristics are better predictors of deceptive content than
community characteristics, both characteristics are strongly correlated with
model performance. Traditional performance metrics such as F1 score may fail to
capture poor model performance on isolated sub-populations such as specific
authors, and as such, more nuanced evaluation of deception detection models is
critical.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
We propose DECIDER, a novel approach that leverages priors from large language models (LLMs) and vision-language models (VLMs) to detect failures in image models.
DECIDER consistently achieves state-of-the-art failure detection performance, significantly outperforming baselines in terms of the overall Matthews correlation coefficient.
arXiv Detail & Related papers (2024-08-01T07:08:11Z) - Explaining Pre-Trained Language Models with Attribution Scores: An
Analysis in Low-Resource Settings [32.03184402316848]
We analyze attribution scores extracted from prompt-based models w.r.t. plausibility and faithfulness.
We find that using the prompting paradigm yields more plausible explanations than fine-tuning the models in low-resource settings.
arXiv Detail & Related papers (2024-03-08T14:14:37Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - Who Explains the Explanation? Quantitatively Assessing Feature
Attribution Methods [0.0]
We propose a novel evaluation metric -- the Focus -- designed to quantify the faithfulness of explanations.
We show the robustness of the metric through randomization experiments, and then use Focus to evaluate and compare three popular explainability techniques.
Our results find LRP and GradCAM to be consistent and reliable, while the latter remains most competitive even when applied to poorly performing models.
arXiv Detail & Related papers (2021-09-28T07:10:24Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Learning by Semantic Similarity Makes Abstractive Summarization Better [13.324006587838522]
We compare the generated summaries from recent LM, BART, and the reference summaries from a benchmark dataset, CNN/DM.
Interestingly, model-generated summaries receive higher scores relative to reference summaries.
arXiv Detail & Related papers (2020-02-18T17:59:02Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.