Relation-Aware Slicing in Cross-Domain Alignment
- URL: http://arxiv.org/abs/2507.13194v1
- Date: Thu, 17 Jul 2025 15:03:25 GMT
- Title: Relation-Aware Slicing in Cross-Domain Alignment
- Authors: Dhruv Sarkar, Aprameyo Chakrabartty, Anish Chakrabarty, Swagatam Das,
- Abstract summary: We propose an optimization-free distribution that provides fast sampling for the Monte Carlo project.<n>This enables to derive the RelationAware Slicing Distribution (RAS), a location-scale law corresponding to RAPDs.
- Score: 17.01811978811789
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Sliced Gromov-Wasserstein (SGW) distance, aiming to relieve the computational cost of solving a non-convex quadratic program that is the Gromov-Wasserstein distance, utilizes projecting directions sampled uniformly from unit hyperspheres. This slicing mechanism incurs unnecessary computational costs due to uninformative directions, which also affects the representative power of the distance. However, finding a more appropriate distribution over the projecting directions (slicing distribution) is often an optimization problem in itself that comes with its own computational cost. In addition, with more intricate distributions, the sampling itself may be expensive. As a remedy, we propose an optimization-free slicing distribution that provides fast sampling for the Monte Carlo approximation. We do so by introducing the Relation-Aware Projecting Direction (RAPD), effectively capturing the pairwise association of each of two pairs of random vectors, each following their ambient law. This enables us to derive the Relation-Aware Slicing Distribution (RASD), a location-scale law corresponding to sampled RAPDs. Finally, we introduce the RASGW distance and its variants, e.g., IWRASGW (Importance Weighted RASGW), which overcome the shortcomings experienced by SGW. We theoretically analyze its properties and substantiate its empirical prowess using extensive experiments on various alignment tasks.
Related papers
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Sliced Wasserstein with Random-Path Projecting Directions [49.802024788196434]
We propose an optimization-free slicing distribution that provides a fast sampling for the Monte Carlo estimation of expectation.
We derive the random-path slicing distribution (RPSD) and two variants of sliced Wasserstein, i.e., the Random-Path Projection Sliced Wasserstein (RPSW) and the Importance Weighted Random-Path Projection Sliced Wasserstein (IWRPSW)
arXiv Detail & Related papers (2024-01-29T04:59:30Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Adaptive importance sampling for heavy-tailed distributions via
$\alpha$-divergence minimization [2.879807093604632]
We propose an AIS algorithm that approximates the target by Student-t proposal distributions.
We adapt location and scale parameters by matching the escort moments of the target and the proposal.
These updates minimize the $alpha$-divergence between the target and the proposal, thereby connecting with variational inference.
arXiv Detail & Related papers (2023-10-25T14:07:08Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
This paper investigates group distributionally robust optimization (GDRO) with the goal of learning a model that performs well over $m$ different distributions.
To reduce the number of samples in each round from $m$ to 1, we cast GDRO as a two-player game, where one player conducts and the other executes an online algorithm for non-oblivious multi-armed bandits.
In the second scenario, we propose to optimize the average top-$k$ risk instead of the maximum risk, thereby mitigating the impact of distributions.
arXiv Detail & Related papers (2023-02-18T09:24:15Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
We introduce a new family of SW distances, named Markovian sliced Wasserstein (MSW) distance, which imposes a first-order Markov structure on projecting directions.
We compare distances with previous SW variants in various applications such as flows, color transfer, and deep generative modeling to demonstrate the favorable performance of MSW.
arXiv Detail & Related papers (2023-01-10T01:58:15Z) - Optimal 1-Wasserstein Distance for WGANs [2.1174215880331775]
We provide a thorough analysis of Wasserstein GANs (WGANs) in both the finite sample and regimes.
We derive in passing new results on optimal transport theory in the semi-discrete setting.
arXiv Detail & Related papers (2022-01-08T13:04:03Z) - Sinkhorn Distributionally Robust Optimization [18.46110328123008]
Sinkhorn distance is a variant of Wasserstein distance based on entropic regularization.<n>We derive a convex programming dual reformulation for general nominal distributions, transport costs, and loss functions.
arXiv Detail & Related papers (2021-09-24T12:40:48Z) - Fast Approximation of the Sliced-Wasserstein Distance Using
Concentration of Random Projections [19.987683989865708]
The Sliced-Wasserstein distance (SW) is being increasingly used in machine learning applications.
We propose a new perspective to approximate SW by making use of the concentration of measure phenomenon.
Our method does not require sampling a number of random projections, and is therefore both accurate and easy to use compared to the usual Monte Carlo approximation.
arXiv Detail & Related papers (2021-06-29T13:56:19Z) - Distributional Sliced Embedding Discrepancy for Incomparable
Distributions [22.615156512223766]
Gromov-Wasserstein (GW) distance is a key tool for manifold learning and cross-domain learning.
We propose a novel approach for comparing two computation distributions, that hinges on the idea of distributional slicing, embeddings, and on computing the closed-form Wasserstein distance between the sliced distributions.
arXiv Detail & Related papers (2021-06-04T15:11:30Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.