Computational-Statistical Tradeoffs from NP-hardness
- URL: http://arxiv.org/abs/2507.13222v1
- Date: Thu, 17 Jul 2025 15:35:36 GMT
- Title: Computational-Statistical Tradeoffs from NP-hardness
- Authors: Guy Blanc, Caleb Koch, Carmen Strassle, Li-Yang Tan,
- Abstract summary: We show that computational efficiency can come at the cost of using more samples than information-theoretically necessary.<n>These are the first $mathsfNP$-hardness results for improperly learning a subclass of-size circuits.
- Score: 12.4670383229297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central question in computer science and statistics is whether efficient algorithms can achieve the information-theoretic limits of statistical problems. Many computational-statistical tradeoffs have been shown under average-case assumptions, but since statistical problems are average-case in nature, it has been a challenge to base them on standard worst-case assumptions. In PAC learning where such tradeoffs were first studied, the question is whether computational efficiency can come at the cost of using more samples than information-theoretically necessary. We base such tradeoffs on $\mathsf{NP}$-hardness and obtain: $\circ$ Sharp computational-statistical tradeoffs assuming $\mathsf{NP}$ requires exponential time: For every polynomial $p(n)$, there is an $n$-variate class $C$ with VC dimension $1$ such that the sample complexity of time-efficiently learning $C$ is $\Theta(p(n))$. $\circ$ A characterization of $\mathsf{RP}$ vs. $\mathsf{NP}$ in terms of learning: $\mathsf{RP} = \mathsf{NP}$ iff every $\mathsf{NP}$-enumerable class is learnable with $O(\mathrm{VCdim}(C))$ samples in polynomial time. The forward implication has been known since (Pitt and Valiant, 1988); we prove the reverse implication. Notably, all our lower bounds hold against improper learners. These are the first $\mathsf{NP}$-hardness results for improperly learning a subclass of polynomial-size circuits, circumventing formal barriers of Applebaum, Barak, and Xiao (2008).
Related papers
- Learning and Computation of $Φ$-Equilibria at the Frontier of Tractability [85.07238533644636]
$Phi$-equilibria is a powerful and flexible framework at the heart of online learning and game theory.<n>We show that an efficient online algorithm incurs average $Phi$-regret at most $epsilon$ using $textpoly(d, k)/epsilon2$ rounds.<n>We also show nearly matching lower bounds in the online setting, thereby obtaining for the first time a family of deviations that captures the learnability of $Phi$-regret.
arXiv Detail & Related papers (2025-02-25T19:08:26Z) - Unconditionally separating noisy $\mathsf{QNC}^0$ from bounded polynomial threshold circuits of constant depth [8.66267734067296]
We study classes of constant-depth circuits with bounds that compute restricted threshold functions.
For large enough values of $mathsfbPTFC0[k]$, $mathsfbPTFC0[k] contains $mathsfTC0[k].
arXiv Detail & Related papers (2024-08-29T09:40:55Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
We study the complexity of PAC learning halfspaces in the presence of Massart noise.
We show that no-time Massart halfspace learners can achieve error better than $Omega(eta)$, even if the optimal 0-1 error is small.
arXiv Detail & Related papers (2022-07-28T17:50:53Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Low-degree learning and the metric entropy of polynomials [44.99833362998488]
We prove that any (deterministic or randomized) algorithm which learns $mathscrF_nd$ with $L$-accuracy $varepsilon$ requires at least $Omega(sqrtvarepsilon)2dlog n leq log mathsfM(mathscrF_n,d,|cdot|_L,varepsilon) satisfies the two-sided estimate $$c (1-varepsilon)2dlog
arXiv Detail & Related papers (2022-03-17T23:52:08Z) - Hardness of Learning Halfspaces with Massart Noise [56.98280399449707]
We study the complexity of PAC learning halfspaces in the presence of Massart (bounded) noise.
We show that there an exponential gap between the information-theoretically optimal error and the best error that can be achieved by a SQ algorithm.
arXiv Detail & Related papers (2020-12-17T16:43:11Z) - Quantum learning algorithms imply circuit lower bounds [7.970954821067043]
We establish the first general connection between the design of quantum algorithms and circuit lower bounds.
Our proof builds on several works in learning theory, pseudorandomness, and computational complexity.
arXiv Detail & Related papers (2020-12-03T14:03:20Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Learning Polynomials of Few Relevant Dimensions [12.122488725065388]
Polynomial regression is a basic primitive in learning and statistics.
We give an algorithm that learns the runtime within accuracy $epsilon$ with sample complexity that is roughly $N = O_r,d(n log2(1/epsilon) (log n)d)$ and $O_r,d(N n2)$.
arXiv Detail & Related papers (2020-04-28T18:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.