Merge Kernel for Bayesian Optimization on Permutation Space
- URL: http://arxiv.org/abs/2507.13263v2
- Date: Fri, 18 Jul 2025 02:45:58 GMT
- Title: Merge Kernel for Bayesian Optimization on Permutation Space
- Authors: Zikai Xie, Linjiang Chen,
- Abstract summary: We propose a novel framework for generating kernel functions on permutation space based on sorting algorithms.<n>The proposed kernel consistently outperforms the state-of-the-art Mallows kernel across various permutation optimization benchmarks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian Optimization (BO) algorithm is a standard tool for black-box optimization problems. The current state-of-the-art BO approach for permutation spaces relies on the Mallows kernel-an $\Omega(n^2)$ representation that explicitly enumerates every pairwise comparison. Inspired by the close relationship between the Mallows kernel and pairwise comparison, we propose a novel framework for generating kernel functions on permutation space based on sorting algorithms. Within this framework, the Mallows kernel can be viewed as a special instance derived from bubble sort. Further, we introduce the \textbf{Merge Kernel} constructed from merge sort, which replaces the quadratic complexity with $\Theta(n\log n)$ to achieve the lowest possible complexity. The resulting feature vector is significantly shorter, can be computed in linearithmic time, yet still efficiently captures meaningful permutation distances. To boost robustness and right-invariance without sacrificing compactness, we further incorporate three lightweight, task-agnostic descriptors: (1) a shift histogram, which aggregates absolute element displacements and supplies a global misplacement signal; (2) a split-pair line, which encodes selected long-range comparisons by aligning elements across the two halves of the whole permutation; and (3) sliding-window motifs, which summarize local order patterns that influence near-neighbor objectives. Our empirical evaluation demonstrates that the proposed kernel consistently outperforms the state-of-the-art Mallows kernel across various permutation optimization benchmarks. Results confirm that the Merge Kernel provides a more compact yet more effective solution for Bayesian optimization in permutation space.
Related papers
- Faster Convergence with Multiway Preferences [99.68922143784306]
We consider the sign-function-based comparison feedback model and analyze the convergence rates with batched and multiway comparisons.
Our work is the first to study the problem of convex optimization with multiway preferences and analyze the optimal convergence rates.
arXiv Detail & Related papers (2023-12-19T01:52:13Z) - Self-concordant Smoothing for Large-Scale Convex Composite Optimization [0.0]
We introduce a notion of self-concordant smoothing for minimizing the sum of two convex functions, one of which is smooth and the other may be nonsmooth.
We prove the convergence of two resulting algorithms: Prox-N-SCORE, a proximal Newton algorithm and Prox-GGN-SCORE, a proximal generalized Gauss-Newton algorithm.
arXiv Detail & Related papers (2023-09-04T19:47:04Z) - Efficient Convex Algorithms for Universal Kernel Learning [46.573275307034336]
An ideal set of kernels should: admit a linear parameterization (for tractability); dense in the set of all kernels (for accuracy)
Previous algorithms for optimization of kernels were limited to classification and relied on computationally complex Semidefinite Programming (SDP) algorithms.
We propose a SVD-QCQPQP algorithm which dramatically reduces the computational complexity as compared with previous SDP-based approaches.
arXiv Detail & Related papers (2023-04-15T04:57:37Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Scalable First-Order Bayesian Optimization via Structured Automatic
Differentiation [4.061135251278187]
We show that a wide range of kernels gives rise to structured matrices, enabling an exact $mathcalO(n2d)$ matrix-vector multiply for gradient observations and $mathcalO(n2d2)$ for Hessian observations.
Our methods apply to virtually all canonical kernels and automatically extend to complex kernels, like the neural network, radial basis function network, and spectral mixture kernels.
arXiv Detail & Related papers (2022-06-16T17:59:48Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Kernel Clustering with Sigmoid-based Regularization for Efficient
Segmentation of Sequential Data [3.8326963933937885]
segmentation aims at partitioning a data sequence into several non-overlapping segments that may have nonlinear and complex structures.
A popular Kernel for optimally solving this problem is dynamic programming (DP), which has quadratic computation and memory requirements.
Although many algorithms have been proposed to approximate the optimal segmentation, they have no guarantee on the quality of their solutions.
arXiv Detail & Related papers (2021-06-22T04:32:21Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Block majorization-minimization with diminishing radius for constrained nonsmooth nonconvex optimization [8.386501595252]
Block majorization-minimativeization (BMM) is a simple iterative algorithm for constrained nonnegative surrogates.<n>We show that BMM produces a novel first-order optimality measure for various algorithms.<n>We also demonstrate that the additional use of diminishing radius can improve the convergence rate of BMM in many instances.
arXiv Detail & Related papers (2020-12-07T07:53:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.