Overview of the TalentCLEF 2025: Skill and Job Title Intelligence for Human Capital Management
- URL: http://arxiv.org/abs/2507.13275v1
- Date: Thu, 17 Jul 2025 16:33:57 GMT
- Title: Overview of the TalentCLEF 2025: Skill and Job Title Intelligence for Human Capital Management
- Authors: Luis Gasco, Hermenegildo Fabregat, Laura García-Sardiña, Paula Estrella, Daniel Deniz, Alvaro Rodrigo, Rabih Zbib,
- Abstract summary: We present TalentCLEF 2025, the first evaluation campaign focused on skill and job title intelligence.<n>The evaluations included monolingual and cross-lingual scenarios and covered the evaluation of gender bias.<n> TalentCLEF provides the first public benchmark in this field and encourages the development of robust, fair, and transferable language technologies for the labor market.
- Score: 0.2276267460638319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in natural language processing and large language models are driving a major transformation in Human Capital Management, with a growing interest in building smart systems based on language technologies for talent acquisition, upskilling strategies, and workforce planning. However, the adoption and progress of these technologies critically depend on the development of reliable and fair models, properly evaluated on public data and open benchmarks, which have so far been unavailable in this domain. To address this gap, we present TalentCLEF 2025, the first evaluation campaign focused on skill and job title intelligence. The lab consists of two tasks: Task A - Multilingual Job Title Matching, covering English, Spanish, German, and Chinese; and Task B - Job Title-Based Skill Prediction, in English. Both corpora were built from real job applications, carefully anonymized, and manually annotated to reflect the complexity and diversity of real-world labor market data, including linguistic variability and gender-marked expressions. The evaluations included monolingual and cross-lingual scenarios and covered the evaluation of gender bias. TalentCLEF attracted 76 registered teams with more than 280 submissions. Most systems relied on information retrieval techniques built with multilingual encoder-based models fine-tuned with contrastive learning, and several of them incorporated large language models for data augmentation or re-ranking. The results show that the training strategies have a larger effect than the size of the model alone. TalentCLEF provides the first public benchmark in this field and encourages the development of robust, fair, and transferable language technologies for the labor market.
Related papers
- Multilingual JobBERT for Cross-Lingual Job Title Matching [5.284778677072807]
JobBERT-V3 is a contrastive learning-based model for cross-lingual job title matching.<n>Our approach extends support to English, German, Spanish, and Chinese by leveraging synthetic translations.<n>JobBERT-V3 achieves consistent performance across both monolingual and cross-lingual settings.
arXiv Detail & Related papers (2025-07-29T09:06:09Z) - The AI Language Proficiency Monitor -- Tracking the Progress of LLMs on Multilingual Benchmarks [0.0]
We introduce the AI Language Monitor, a comprehensive benchmark that assesses large language models (LLMs) performance across up to 200 languages.<n>Our benchmark aggregates diverse tasks including translation, question answering, math, and reasoning, using datasets such as FLORES+, MMLU, GSM8K, TruthfulQA, and ARC.<n>We provide an open-source, auto-updating leaderboard and dashboard that supports researchers, developers, and policymakers in identifying strengths and gaps in model performance.
arXiv Detail & Related papers (2025-07-11T12:38:02Z) - Overcoming Data Scarcity in Generative Language Modelling for Low-Resource Languages: A Systematic Review [0.7366405857677227]
This paper focuses on strategies to address data scarcity in generative language modelling for low-resource languages (LRL)<n>We identify, categorise and evaluate technical approaches, including monolingual data augmentation, back-translation, multilingual training, and prompt engineering.<n>We conclude with recommendations for extending these methods to a wider range of LRLs and outline open challenges in building equitable generative language systems.
arXiv Detail & Related papers (2025-05-07T16:04:45Z) - Entity-aware Cross-lingual Claim Detection for Automated Fact-checking [7.242609314791262]
We introduce EX-Claim, an entity-aware cross-lingual claim detection model that generalizes well to handle multilingual claims.<n>We show consistent performance gains across 27 languages and robust knowledge transfer between languages seen and unseen during training.
arXiv Detail & Related papers (2025-03-19T14:00:55Z) - Tec-Habilidad: Skill Classification for Bridging Education and Employment [0.7373617024876725]
This paper develops a Spanish language dataset for skill extraction and classification.<n>It provides annotation methodology to distinguish between knowledge, skill, and abilities.<n>It also provides deep learning baselines to advance robust solutions for skill classification.
arXiv Detail & Related papers (2025-03-05T22:05:42Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
We create datasets and models aimed at narrowing the performance gap between low and high-resource languages.
We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks.
Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art.
arXiv Detail & Related papers (2022-07-11T07:33:36Z) - Overcoming Language Disparity in Online Content Classification with
Multimodal Learning [22.73281502531998]
Large language models are now the standard to develop state-of-the-art solutions for text detection and classification tasks.
The development of advanced computational techniques and resources is disproportionately focused on the English language.
We explore the promise of incorporating the information contained in images via multimodal machine learning.
arXiv Detail & Related papers (2022-05-19T17:56:02Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
We evaluate how well language models capture the semantics of four tasks for bias: diagnosis, identification, extraction and rephrasing.
Our analyses indicate that language models are capable of performing these tasks to widely varying degrees across different bias dimensions, such as gender and political affiliation.
arXiv Detail & Related papers (2021-12-16T05:36:08Z) - Crossing the Conversational Chasm: A Primer on Multilingual
Task-Oriented Dialogue Systems [51.328224222640614]
Current state-of-the-art ToD models based on large pretrained neural language models are data hungry.
Data acquisition for ToD use cases is expensive and tedious.
arXiv Detail & Related papers (2021-04-17T15:19:56Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
We build an offensive language detection system, which combines multi-task learning with BERT-based models.
Our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place.
arXiv Detail & Related papers (2020-04-28T11:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.