Evaluating Reinforcement Learning Algorithms for Navigation in Simulated Robotic Quadrupeds: A Comparative Study Inspired by Guide Dog Behaviour
- URL: http://arxiv.org/abs/2507.13277v1
- Date: Thu, 17 Jul 2025 16:38:14 GMT
- Title: Evaluating Reinforcement Learning Algorithms for Navigation in Simulated Robotic Quadrupeds: A Comparative Study Inspired by Guide Dog Behaviour
- Authors: Emma M. A. Harrison,
- Abstract summary: This research explores the effectiveness of three reinforcement learning algorithms in training a simulated quadruped robot for autonomous navigation and obstacle avoidance.<n>The goal is to develop a robotic guide dog simulation capable of path following and obstacle avoidance.<n>It also seeks to expand research into medical 'pets', including robotic guide and alert dogs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots are increasingly integrated across industries, particularly in healthcare. However, many valuable applications for quadrupedal robots remain overlooked. This research explores the effectiveness of three reinforcement learning algorithms in training a simulated quadruped robot for autonomous navigation and obstacle avoidance. The goal is to develop a robotic guide dog simulation capable of path following and obstacle avoidance, with long-term potential for real-world assistance to guide dogs and visually impaired individuals. It also seeks to expand research into medical 'pets', including robotic guide and alert dogs. A comparative analysis of thirteen related research papers shaped key evaluation criteria, including collision detection, pathfinding algorithms, sensor usage, robot type, and simulation platforms. The study focuses on sensor inputs, collision frequency, reward signals, and learning progression to determine which algorithm best supports robotic navigation in complex environments. Custom-made environments were used to ensure fair evaluation of all three algorithms under controlled conditions, allowing consistent data collection. Results show that Proximal Policy Optimization (PPO) outperformed Deep Q-Network (DQN) and Q-learning across all metrics, particularly in average and median steps to goal per episode. By analysing these results, this study contributes to robotic navigation, AI and medical robotics, offering insights into the feasibility of AI-driven quadruped mobility and its role in assistive robotics.
Related papers
- Siamese Network with Dual Attention for EEG-Driven Social Learning: Bridging the Human-Robot Gap in Long-Tail Autonomous Driving [0.0]
This study presents a brain-computer interface (BCI) framework that enables classification of Electroencephalogram (EEG) signals to detect cognitively demanding and safety-critical events.<n>As a timely and motivating co-robotic engineering application, we simulate a human-in-the-loop scenario to flag risky events in semi-autonomous robotic driving.<n>We propose a dual-attention Siamese convolutional network paired with Dynamic Time Warping Barycenter Averaging approach to generate robust EEG-encoded signal representations.
arXiv Detail & Related papers (2025-04-14T15:06:17Z) - A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
arXiv Detail & Related papers (2024-08-21T11:32:09Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
This study investigates the application of deep reinforcement learning to train a mobile robot for autonomous navigation in a complex environment.
The robot utilizes LiDAR sensor data and a deep neural network to generate control signals guiding it toward a specified target while avoiding obstacles.
arXiv Detail & Related papers (2024-05-25T15:08:36Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning [82.46975428739329]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.<n>We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.<n>These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Quality-Diversity Optimisation on a Physical Robot Through
Dynamics-Aware and Reset-Free Learning [4.260312058817663]
We build upon the Reset-Free QD (RF-QD) algorithm to learn controllers directly on a physical robot.
This method uses a dynamics model, learned from interactions between the robot and the environment, to predict the robot's behaviour.
RF-QD also includes a recovery policy that returns the robot to a safe zone when it has walked outside of it, allowing continuous learning.
arXiv Detail & Related papers (2023-04-24T13:24:00Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Discovering Unsupervised Behaviours from Full-State Trajectories [1.827510863075184]
We propose an analysis of Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that autonomously finds behavioural characterisations.
We evaluate this approach on a simulated robotic environment, where the robot has to autonomously discover its abilities from its full-state trajectories.
More specifically, the analysed approach autonomously finds policies that make the robot move to diverse positions, but also utilise its legs in diverse ways, and even perform half-rolls.
arXiv Detail & Related papers (2022-11-22T16:57:52Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.