論文の概要: Transformer-Based Framework for Motion Capture Denoising and Anomaly Detection in Medical Rehabilitation
- arxiv url: http://arxiv.org/abs/2507.13371v1
- Date: Fri, 11 Jul 2025 20:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.040876
- Title: Transformer-Based Framework for Motion Capture Denoising and Anomaly Detection in Medical Rehabilitation
- Title(参考訳): 医療リハビリテーションにおける運動捕捉・異常検出のためのトランスフォーマーベースフレームワーク
- Authors: Yeming Cai, Yang Wang, Zhenglin Li,
- Abstract要約: 本稿では,光学式モーションキャプチャとトランスフォーマーモデルを組み合わせたエンドツーエンドのディープラーニングフレームワークを提案する。
閉塞や環境要因によるデータノイズや欠落に対処し、患者の安全を確保するためにリアルタイムで異常な動きを検出する。
脳卒中と整形外科リハビリテーションデータセットの評価は、データ再構成と異常検出において優れた性能を示し、遠隔リハビリテーションのためのスケーラブルで費用対効果の高いソリューションを提供する。
- 参考スコア(独自算出の注目度): 4.213923165125709
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes an end-to-end deep learning framework integrating optical motion capture with a Transformer-based model to enhance medical rehabilitation. It tackles data noise and missing data caused by occlusion and environmental factors, while detecting abnormal movements in real time to ensure patient safety. Utilizing temporal sequence modeling, our framework denoises and completes motion capture data, improving robustness. Evaluations on stroke and orthopedic rehabilitation datasets show superior performance in data reconstruction and anomaly detection, providing a scalable, cost-effective solution for remote rehabilitation with reduced on-site supervision.
- Abstract(参考訳): 本稿では,光学式モーションキャプチャとトランスフォーマーモデルを組み合わせたエンドツーエンドのディープラーニングフレームワークを提案する。
閉塞や環境要因によるデータノイズや欠落に対処し、患者の安全を確保するためにリアルタイムで異常な動きを検出する。
時間的シーケンスモデリングを利用して、我々のフレームワークはモーションキャプチャーデータを解析し、完成させ、ロバスト性を向上させる。
脳卒中と整形外科リハビリテーションデータセットの評価は、データ再構成と異常検出において優れた性能を示し、遠隔リハビリテーションのためのスケーラブルで費用対効果の高いソリューションを提供する。
関連論文リスト
- High-Fidelity Functional Ultrasound Reconstruction via A Visual Auto-Regressive Framework [58.07923338080814]
機能的神経側頭葉イメージングはマッピングに例外的な解像度を提供する。
しかし、その実践的応用は重大な課題によって妨げられている。
データ不足、倫理的考慮、信号劣化などが含まれる。
論文 参考訳(メタデータ) (2025-05-23T15:27:17Z) - Generalizable automated ischaemic stroke lesion segmentation with vision transformers [0.7400397057238803]
拡散強調画像(DWI)は虚血性脳梗塞において最も高い発現率を示す。
したがって、現在のU-Netベースのモデルは、不適切な評価指標によってアクセント付けられる問題として、性能が劣っている。
本稿ではこれらの課題に対処する高性能なDWI病変分割ツールを提案する。
論文 参考訳(メタデータ) (2025-02-10T19:00:00Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Deep End-to-end Adaptive k-Space Sampling, Reconstruction, and Registration for Dynamic MRI [6.875699572081067]
適応型動的k空間サンプリング,再構成,登録を統合したエンドツーエンドのディープラーニングフレームワークを提案する。
提案するフレームワークは、これらのコンポーネントのプラグアンドプレイ統合を可能にする、特定の再構築および登録モジュールとは独立している。
論文 参考訳(メタデータ) (2024-11-27T11:38:48Z) - Neuro-TransUNet: Segmentation of stroke lesion in MRI using transformers [0.6554326244334866]
本研究では,U-Netの空間的特徴抽出をSwinUNETRのグローバルな文脈処理能力と併用するNeuro-TransUNetフレームワークを提案する。
提案したNeuro-TransUNetモデルは、ATLAS v2.0のアントレーニングデータセットでトレーニングされ、既存のディープラーニングアルゴリズムを上回っ、脳卒中病変セグメンテーションの新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-10T04:36:21Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on transformer for assessment of patient physical rehabilitation [0.30693357740321775]
本稿では,リハビリテーション演習を評価するための新しいグラフベースモデルを提案する。
デンス接続とGRU機構は、大きな3Dスケルトン入力を迅速に処理するために使用される。
KIMOREおよびUI-PRMDデータセットに対する提案手法の評価は,その可能性を強調した。
論文 参考訳(メタデータ) (2023-12-21T00:38:31Z) - Video Dynamics Prior: An Internal Learning Approach for Robust Video
Enhancements [83.5820690348833]
外部トレーニングデータコーパスを必要としない低レベルの視覚タスクのためのフレームワークを提案する。
提案手法は,コヒーレンス・時間的テストの重み付けと統計内部統計を利用して,破損したシーケンスを最適化することでニューラルモジュールを学習する。
論文 参考訳(メタデータ) (2023-12-13T01:57:11Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
本稿では,教師なし特徴抽出器として生成拡散オートエンコーダモデルを訓練するための新しい手法を提案する。
フラクチャーグレーディングを連続回帰としてモデル化し, フラクチャーのスムーズな進行を反映した。
重要なことに,本手法の創成特性は,与えられた脊椎の様々な段階を可視化し,自動グルーピングに寄与する特徴を解釈し,洞察することを可能にする。
論文 参考訳(メタデータ) (2023-03-21T17:16:01Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Motion Correction and Volumetric Reconstruction for Fetal Functional
Magnetic Resonance Imaging Data [3.690756997172894]
運動補正は胎児脳の機能的磁気共鳴イメージング(fMRI)において重要な前処理ステップである。
胎児のfMRIに対する現在の動作補正手法は、特定の取得時点から1つの3Dボリュームを選択する。
本稿では,外乱運動補正を用いて高解像度の基準体積を推定する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-11T19:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。