論文の概要: Domain-randomized deep learning for neuroimage analysis
- arxiv url: http://arxiv.org/abs/2507.13458v1
- Date: Thu, 17 Jul 2025 18:07:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.106816
- Title: Domain-randomized deep learning for neuroimage analysis
- Title(参考訳): 神経画像解析のためのドメインランダム化深層学習
- Authors: Malte Hoffmann,
- Abstract要約: 本チュートリアルでは,合成駆動学習パラダイムの原理,実装,および可能性について概説する。
これは、一般化の改善やオーバーフィッティングに対する抵抗といった重要な利点を強調し、計算要求の増加などのトレードオフについて議論している。
- 参考スコア(独自算出の注目度): 0.7252027234425334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has revolutionized neuroimage analysis by delivering unprecedented speed and accuracy. However, the narrow scope of many training datasets constrains model robustness and generalizability. This challenge is particularly acute in magnetic resonance imaging (MRI), where image appearance varies widely across pulse sequences and scanner hardware. A recent domain-randomization strategy addresses the generalization problem by training deep neural networks on synthetic images with randomized intensities and anatomical content. By generating diverse data from anatomical segmentation maps, the approach enables models to accurately process image types unseen during training, without retraining or fine-tuning. It has demonstrated effectiveness across modalities including MRI, computed tomography, positron emission tomography, and optical coherence tomography, as well as beyond neuroimaging in ultrasound, electron and fluorescence microscopy, and X-ray microtomography. This tutorial paper reviews the principles, implementation, and potential of the synthesis-driven training paradigm. It highlights key benefits, such as improved generalization and resistance to overfitting, while discussing trade-offs such as increased computational demands. Finally, the article explores practical considerations for adopting the technique, aiming to accelerate the development of generalizable tools that make deep learning more accessible to domain experts without extensive computational resources or machine learning knowledge.
- Abstract(参考訳): ディープラーニングは、前例のないスピードと正確さを提供することによって、神経画像解析に革命をもたらした。
しかし、多くのトレーニングデータセットの狭い範囲は、堅牢性と一般化可能性のモデルに制約を与える。
この課題は特にMRI(MRI)において急激であり、画像の外観はパルスシーケンスやスキャナーのハードウェアによって大きく異なる。
最近のドメインランダム化戦略では、ランダム化強度と解剖学的内容を持つ合成画像上で、ディープニューラルネットワークをトレーニングすることで一般化問題に対処している。
解剖学的セグメンテーションマップから多様なデータを生成することにより、トレーニング中に見えないイメージタイプを、再トレーニングや微調整なしに正確に処理することができる。
MRI、CT、ポジトロン・エミッション・トモグラフィ、光コヒーレンス・トモグラフィー、超音波、電子顕微鏡、蛍光顕微鏡、X線マイクロトモグラフィーなど、様々な分野で効果が示されている。
本チュートリアルでは,合成駆動学習パラダイムの原理,実装,および可能性について概説する。
これは、一般化の改善やオーバーフィッティングに対する抵抗といった重要な利点を強調し、計算要求の増加などのトレードオフについて議論している。
最後に、この手法を採用するための実践的考察を考察し、広範囲の計算資源や機械学習知識を必要とせずに、ドメインエキスパートに深層学習をよりアクセスしやすくする汎用ツールの開発を加速することを目的とする。
関連論文リスト
- An Ensemble Approach for Brain Tumor Segmentation and Synthesis [0.12777007405746044]
磁気共鳴イメージング(MRI)における機械学習の統合は、信じられないほど効果的であることが証明されている。
ディープラーニングモデルは、複雑なデータの複雑な詳細をキャプチャするために、複数の処理層を利用する。
本稿では,最先端アーキテクチャを組み込んだディープラーニングフレームワークを提案し,精度の高いセグメンテーションを実現する。
論文 参考訳(メタデータ) (2024-11-26T17:28:51Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
電磁法(EM)イメージングは、セキュリティ、バイオメディシン、地球物理学、各種産業のセンシングに広く応用されている。
機械学習(ML)技術,特に深層学習(DL)技術は,高速かつ正確な画像化の可能性を秘めている。
本稿では、学習に基づくEMイメージングに物理を取り入れる様々なスキームについて検討する。
論文 参考訳(メタデータ) (2022-07-26T02:10:15Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Self-supervised Learning from 100 Million Medical Images [13.958840691105992]
コントラスト学習とオンライン特徴クラスタリングに基づく,リッチな画像特徴の自己教師付き学習手法を提案する。
我々は,X線撮影,CT,MRI,超音波など,様々なモードの医療画像10万枚を超える大規模なトレーニングデータセットを活用している。
本稿では,X線撮影,CT,MRにおける画像評価の課題に対して,この戦略の多くの利点を強調した。
論文 参考訳(メタデータ) (2022-01-04T18:27:04Z) - Light-Field Microscopy for optical imaging of neuronal activity: when
model-based methods meet data-driven approaches [28.872219458334587]
ニューロンのネットワークがどのように情報を処理するかを理解することは、現代の神経科学における重要な課題の1つである。
光電場顕微鏡(LFM)は、走査型顕微鏡の一種であり、高速3Dイメージングの特に魅力的な候補である。
本稿では,モデルベースおよびデータ駆動型アプローチに焦点をあて,LFMの最先端計算手法に関する包括的調査に着目する。
論文 参考訳(メタデータ) (2021-10-24T20:58:51Z) - A review of deep learning methods for MRI reconstruction [8.37609145576126]
コンピュータビジョンと画像処理のための深層学習技術に触発された多くのアイデアが、MRIの高速化のための圧縮センシングの精神における非線形画像再構成に成功している。
本稿では,並列画像の改良に特化して提案されているニューラルネットベースのアプローチの最近の展開について概説する。
論文 参考訳(メタデータ) (2021-09-17T15:50:51Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Learned Spectral Computed Tomography [0.0]
スペクトル光子結合型CTのためのディープラーニングイメージング法を提案する。
この方法は、ケース固有データを用いて訓練された2段階の学習された原始双対アルゴリズムの形を取る。
提案手法は, 限られたデータの場合であっても, 高速再構成機能と高速撮像性能により特徴付けられる。
論文 参考訳(メタデータ) (2020-03-09T13:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。