Domain-randomized deep learning for neuroimage analysis
- URL: http://arxiv.org/abs/2507.13458v1
- Date: Thu, 17 Jul 2025 18:07:42 GMT
- Title: Domain-randomized deep learning for neuroimage analysis
- Authors: Malte Hoffmann,
- Abstract summary: This tutorial paper reviews the principles, implementation, and potential of the synthesis-driven training paradigm.<n>It highlights key benefits, such as improved generalization and resistance to overfitting, while discussing trade-offs such as increased computational demands.
- Score: 0.7252027234425334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has revolutionized neuroimage analysis by delivering unprecedented speed and accuracy. However, the narrow scope of many training datasets constrains model robustness and generalizability. This challenge is particularly acute in magnetic resonance imaging (MRI), where image appearance varies widely across pulse sequences and scanner hardware. A recent domain-randomization strategy addresses the generalization problem by training deep neural networks on synthetic images with randomized intensities and anatomical content. By generating diverse data from anatomical segmentation maps, the approach enables models to accurately process image types unseen during training, without retraining or fine-tuning. It has demonstrated effectiveness across modalities including MRI, computed tomography, positron emission tomography, and optical coherence tomography, as well as beyond neuroimaging in ultrasound, electron and fluorescence microscopy, and X-ray microtomography. This tutorial paper reviews the principles, implementation, and potential of the synthesis-driven training paradigm. It highlights key benefits, such as improved generalization and resistance to overfitting, while discussing trade-offs such as increased computational demands. Finally, the article explores practical considerations for adopting the technique, aiming to accelerate the development of generalizable tools that make deep learning more accessible to domain experts without extensive computational resources or machine learning knowledge.
Related papers
- An Ensemble Approach for Brain Tumor Segmentation and Synthesis [0.12777007405746044]
The integration of machine learning in magnetic resonance imaging (MRI) is proving to be incredibly effective.
Deep learning models utilize multiple layers of processing to capture intricate details of complex data.
We propose a deep learning framework that ensembles state-of-the-art architectures to achieve accurate segmentation.
arXiv Detail & Related papers (2024-11-26T17:28:51Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
Electromagnetic (EM) imaging is widely applied in sensing for security, biomedicine, geophysics, and various industries.
It is an ill-posed inverse problem whose solution is usually computationally expensive. Machine learning (ML) techniques and especially deep learning (DL) show potential in fast and accurate imaging.
This article surveys various schemes to incorporate physics in learning-based EM imaging.
arXiv Detail & Related papers (2022-07-26T02:10:15Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Self-supervised Learning from 100 Million Medical Images [13.958840691105992]
We propose a method for self-supervised learning of rich image features based on contrastive learning and online feature clustering.
We leverage large training datasets of over 100,000,000 medical images of various modalities, including radiography, computed tomography (CT), magnetic resonance (MR) imaging and ultrasonography.
We highlight a number of advantages of this strategy on challenging image assessment problems in radiography, CT and MR.
arXiv Detail & Related papers (2022-01-04T18:27:04Z) - Light-Field Microscopy for optical imaging of neuronal activity: when
model-based methods meet data-driven approaches [28.872219458334587]
Understanding how networks of neurons process information is one of the key challenges in modern neuroscience.
Light-field microscopy (LFM), a type of scanless microscope, is a particularly attractive candidate for high-speed 3D imaging.
This paper is devoted to a comprehensive survey to state-of-the-art computational methods for LFM, with a focus on model-based and data-driven approaches.
arXiv Detail & Related papers (2021-10-24T20:58:51Z) - A review of deep learning methods for MRI reconstruction [8.37609145576126]
A number of ideas inspired by deep learning techniques for computer vision and image processing have been successfully applied to nonlinear image reconstruction in the spirit of compressed sensing for accelerated MRI.
This article provides an overview of the recent developments in neural-network based approaches that have been proposed specifically for improving parallel imaging.
arXiv Detail & Related papers (2021-09-17T15:50:51Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.