An Ensemble Approach for Brain Tumor Segmentation and Synthesis
- URL: http://arxiv.org/abs/2411.17617v1
- Date: Tue, 26 Nov 2024 17:28:51 GMT
- Title: An Ensemble Approach for Brain Tumor Segmentation and Synthesis
- Authors: Juampablo E. Heras Rivera, Agamdeep S. Chopra, Tianyi Ren, Hitender Oswal, Yutong Pan, Zineb Sordo, Sophie Walters, William Henry, Hooman Mohammadi, Riley Olson, Fargol Rezayaraghi, Tyson Lam, Akshay Jaikanth, Pavan Kancharla, Jacob Ruzevick, Daniela Ushizima, Mehmet Kurt,
- Abstract summary: The integration of machine learning in magnetic resonance imaging (MRI) is proving to be incredibly effective.
Deep learning models utilize multiple layers of processing to capture intricate details of complex data.
We propose a deep learning framework that ensembles state-of-the-art architectures to achieve accurate segmentation.
- Score: 0.12777007405746044
- License:
- Abstract: The integration of machine learning in magnetic resonance imaging (MRI), specifically in neuroimaging, is proving to be incredibly effective, leading to better diagnostic accuracy, accelerated image analysis, and data-driven insights, which can potentially transform patient care. Deep learning models utilize multiple layers of processing to capture intricate details of complex data, which can then be used on a variety of tasks, including brain tumor classification, segmentation, image synthesis, and registration. Previous research demonstrates high accuracy in tumor segmentation using various model architectures, including nn-UNet and Swin-UNet. U-Mamba, which uses state space modeling, also achieves high accuracy in medical image segmentation. To leverage these models, we propose a deep learning framework that ensembles these state-of-the-art architectures to achieve accurate segmentation and produce finely synthesized images.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model [0.0]
This work investigates the use of Deep Convolutional Generative Adversarial Networks (DCGAN) for producing high-fidelity and realistic MRI image slices.
While the discriminator network discerns between created and real slices, the generator network learns to synthesise realistic MRI image slices.
The generator refines its capacity to generate slices that closely mimic real MRI data through an adversarial training approach.
arXiv Detail & Related papers (2024-04-11T05:06:51Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
Reconstructing the viewed images from human brain activity bridges human and computer vision through the Brain-Computer Interface.
We devise Psychometry, an omnifit model for reconstructing images from functional Magnetic Resonance Imaging (fMRI) obtained from different subjects.
arXiv Detail & Related papers (2024-03-29T07:16:34Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) [9.082208613256295]
We present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023.
The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided.
arXiv Detail & Related papers (2023-05-15T20:49:58Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Neural Architecture Search for Gliomas Segmentation on Multimodal
Magnetic Resonance Imaging [2.66512000865131]
We propose a neural architecture search (NAS) based solution to brain tumor segmentation tasks on multimodal MRI scans.
The developed solution also integrates normalization and patching strategies tailored for brain MRI processing.
arXiv Detail & Related papers (2020-05-13T14:32:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.