Cryogenic Performance Evaluation of Commercial SP4T Microelectromechanical Switch for Quantum Computing Applications
- URL: http://arxiv.org/abs/2507.13574v1
- Date: Thu, 17 Jul 2025 23:33:18 GMT
- Title: Cryogenic Performance Evaluation of Commercial SP4T Microelectromechanical Switch for Quantum Computing Applications
- Authors: Yong-Bok Lee, Connor Devitt, Xu Zhu, Nicholas Yost, Yabei Gu, Sunil A. Bhave,
- Abstract summary: This paper investigates the viability of commercial microelectromechanical system (MEMS) switches for cryogenic multiplexers in large-scale quantum computing systems.<n>MEMS switches exhibit improved on-resistance, lower operating voltage, and superior RF performance at cryogenic temperatures, with reliable operation over 100 million cycles.
- Score: 4.191261372459387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting quantum computers have emerged as a leading platform for next-generation computing, offering exceptional scalability and unprecedented computational speeds. However, scaling these systems to millions of qubits for practical applications poses substantial challenges, particularly due to interconnect bottlenecks. To address this challenge, extensive research has focused on developing cryogenic multiplexers that enable minimal wiring between room-temperature electronics and quantum processors. This paper investigates the viability of commercial microelectromechanical system (MEMS) switches for cryogenic multiplexers in large-scale quantum computing systems. DC and RF characteristics of the MEMS switches are evaluated at cryogenic temperatures (< 10 K) through finite element simulations and experimental measurements. Our results demonstrate that MEMS switches exhibit improved on-resistance, lower operating voltage, and superior RF performance at cryogenic temperatures, with reliable operation over 100 million cycles. Furthermore, stable single-pole four-throw (SP4T) switching and logical operations, including NAND and NOR gates, are demonstrated at cryogenic temperatures, validating their potential for quantum computing. These results underscore the promise of MEMS switches in realizing large-scale quantum computing systems.
Related papers
- Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.<n>FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.<n>We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
arXiv Detail & Related papers (2025-04-08T14:28:54Z) - Cryogenic Control and Readout Integrated Circuits for Solid-State Quantum Computing [44.99833362998488]
cryogenic integrated circuits (ICs) have emerged as potential alternatives to room-temperature electronics.
operating at cryogenic temperatures can suppress electronic noise and improve qubit control fidelity.
For CMOS ICs specifically, circuit design uncertainties arise due to a lack of reliable models for cryogenic field effect transistors.
arXiv Detail & Related papers (2024-10-21T11:15:45Z) - A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing [7.742583250368887]
For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables.
This architecture is not viable for millions of qubits required for fault-tolerant quantum computing.
Monolithic integration of the control electronics and the qubits provides a promising solution.
We report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures.
arXiv Detail & Related papers (2024-07-16T14:33:18Z) - Rapid cryogenic characterisation of 1024 integrated silicon quantum dots [0.6819010383838326]
We demonstrate the integration of 1024 silicon quantum dots with on-chip digital and analogue electronics, all operating below 1 K.
Key quantum dot parameters are extracted by fast automated machine learning routines to assess quantum dot yield and understand the impact of device design.
Results show how rapid large-scale studies of silicon quantum devices can be performed at lower temperatures and measurement rates orders of magnitude faster than current probing techniques.
arXiv Detail & Related papers (2023-10-31T13:14:43Z) - Superconductor modulation circuits for Qubit control at microwave
frequencies [0.0]
Single Flux Quantum (SFQ) and Adiabatic Quantum Flux Parametron (AQFP) superconductor logic families can reach ultimate performance at cryogenic temperatures.
We have created a superconductor-based on-chip function generator to control qubits.
arXiv Detail & Related papers (2022-11-12T13:54:30Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - A scalable helium gas cooling system for trapped-ion applications [51.715517570634994]
A modular cooling system is presented for use with multiple ion-trapping experiments simultaneously.
The cooling system is expected to deliver a net cooling power of 111 W at 70 K to up to four experiments.
arXiv Detail & Related papers (2021-06-14T16:37:54Z) - A low-noise on-chip coherent microwave source [0.0]
We report an on-chip device that is based on a Josephson junction coupled to a spiral resonator and is capable of coherent continuous-wave microwave emission.
The infidelity of typical quantum gate operations due to the phase noise of this cryogenic 25-pW microwave source is less than 0.1% up to 10-ms evolution times.
arXiv Detail & Related papers (2021-03-13T04:51:53Z) - Millikelvin temperature cryo-CMOS multiplexer for scalable quantum
device characterisation [44.07593636917153]
Quantum computers based on solid state qubits have been a subject of rapid development in recent years.
Currently, each quantum device is controlled and characterised though a dedicated signal line between room temperature and base temperature of a dilution refrigerator.
This approach is not scalable and is currently limiting the development of large-scale quantum system integration and quantum device characterisation.
arXiv Detail & Related papers (2020-11-23T16:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.