論文の概要: GIFT: Gradient-aware Immunization of diffusion models against malicious Fine-Tuning with safe concepts retention
- arxiv url: http://arxiv.org/abs/2507.13598v1
- Date: Fri, 18 Jul 2025 01:47:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.163562
- Title: GIFT: Gradient-aware Immunization of diffusion models against malicious Fine-Tuning with safe concepts retention
- Title(参考訳): GIFT:安全な概念を維持した悪意のあるファインタニングに対する拡散モデルのグラディエント認識免疫
- Authors: Amro Abdalla, Ismail Shaheen, Dan DeGenaro, Rupayan Mallick, Bogdan Raita, Sarah Adel Bargal,
- Abstract要約: GIFT: 拡散モデルを守るグラディエント対応免疫技術。
- 参考スコア(独自算出の注目度): 5.429335132446078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present GIFT: a {G}radient-aware {I}mmunization technique to defend diffusion models against malicious {F}ine-{T}uning while preserving their ability to generate safe content. Existing safety mechanisms like safety checkers are easily bypassed, and concept erasure methods fail under adversarial fine-tuning. GIFT addresses this by framing immunization as a bi-level optimization problem: the upper-level objective degrades the model's ability to represent harmful concepts using representation noising and maximization, while the lower-level objective preserves performance on safe data. GIFT achieves robust resistance to malicious fine-tuning while maintaining safe generative quality. Experimental results show that our method significantly impairs the model's ability to re-learn harmful concepts while maintaining performance on safe content, offering a promising direction for creating inherently safer generative models resistant to adversarial fine-tuning attacks.
- Abstract(参考訳): 我々は,安全なコンテンツを生成する能力を維持しつつ,悪意のある {F}ine-{T}uning に対して拡散モデルを防御する {G}radient-aware {I}mmunization 技術を提案する。
既存の安全チェックのような安全メカニズムは容易にバイパスされ、敵の微調整で概念消去方法が失敗する。
GIFTは、免疫を二段階最適化の問題としてフレーミングすることでこの問題に対処する: 上位の目的は、表現のノーミングと最大化を使って有害な概念を表現する能力を低下させ、下位の目的は安全なデータのパフォーマンスを維持する。
GIFTは、安全な生成品質を維持しながら、悪意のある微調整に対する堅牢な耐性を実現する。
実験結果から,本手法は安全コンテンツの性能を維持しつつ,有害な概念を再学習する能力を著しく損なうことが示唆された。
関連論文リスト
- Towards Resilient Safety-driven Unlearning for Diffusion Models against Downstream Fine-tuning [24.176983833455413]
テキスト・ツー・イメージ(T2I)拡散モデルは、印象的な画像生成品質を達成し、パーソナライズされたアプリケーション向けに微調整されている。
これらのモデルはしばしば有毒な事前訓練データから安全でない行動を継承し、安全性の懸念が高まる。
本稿では、下流の微調整に対するレジリエンスを高める安全駆動型アンラーニングフレームワークResAlignを提案する。
論文 参考訳(メタデータ) (2025-07-22T07:40:16Z) - CURE: Concept Unlearning via Orthogonal Representation Editing in Diffusion Models [6.738409533239947]
CUREは、事前訓練された拡散モデルの重み空間で直接動作する、トレーニング不要の概念未学習フレームワークである。
スペクトル消去器は、安全な属性を保持しながら、望ましくない概念に特有の特徴を特定し、分離する。
CUREは、対象とする芸術スタイル、オブジェクト、アイデンティティ、明示的なコンテンツに対して、より効率的で徹底的な除去を実現する。
論文 参考訳(メタデータ) (2025-05-19T03:53:06Z) - Detect-and-Guide: Self-regulation of Diffusion Models for Safe Text-to-Image Generation via Guideline Token Optimization [22.225141381422873]
有害なコンテンツを生成するテキストと画像の拡散モデルに対する懸念が高まっている。
概念アンラーニングや安全ガイダンスのようなポストホックモデルの介入技術は、これらのリスクを軽減するために開発されている。
本稿では,自己診断と詳細な自己制御を行うための安全生成フレームワークであるDector-and-Guide(DAG)を提案する。
DAGは最先端の安全な生成性能を実現し、有害性軽減とテキスト追跡性能を現実のプロンプトでバランスさせる。
論文 参考訳(メタデータ) (2025-03-19T13:37:52Z) - Safety Alignment Backfires: Preventing the Re-emergence of Suppressed Concepts in Fine-tuned Text-to-Image Diffusion Models [57.16056181201623]
微調整されたテキストと画像の拡散モデルは、必然的に安全対策を解除し、有害な概念を再現する。
本報告では,Funice-Tuning LoRAコンポーネントとは別に,安全性の低い適応モジュールをトレーニングする,Modular LoRAと呼ばれる新しいソリューションを提案する。
本手法は,新しいタスクにおけるモデルの性能を損なうことなく,有害なコンテンツの再学習を効果的に防止する。
論文 参考訳(メタデータ) (2024-11-30T04:37:38Z) - Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction [88.18235230849554]
大規模で未処理のデータセットでマルチモーダル生成モデルをトレーニングすることで、ユーザは有害で安全でない、議論の余地のない、文化的に不適切なアウトプットにさらされる可能性がある。
我々は、安全な埋め込みと、より安全な画像を生成するために、潜伏空間の重み付け可能な総和による修正拡散プロセスを活用する。
安全と検閲のトレードオフを特定し、倫理的AIモデルの開発に必要な視点を提示します。
論文 参考訳(メタデータ) (2024-11-21T09:47:13Z) - SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation [65.30207993362595]
安全な生成のための学習/編集に基づく手法は、モデルから有害な概念を取り除くが、いくつかの課題に直面している。
安全なT2IとT2VのためのトレーニングフリーアプローチであるSAFREEを提案する。
テキスト埋め込み空間における有毒な概念の集合に対応する部分空間を検出し、この部分空間から直ちに埋め込みを行う。
論文 参考訳(メタデータ) (2024-10-16T17:32:23Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
本稿では,Reliable and Efficient Concept Erasure (RECE)を提案する。
派生した埋め込みによって表現される不適切なコンテンツを緩和するために、RECEはそれらをクロスアテンション層における無害な概念と整合させる。
新たな表現埋め込みの導出と消去を反復的に行い、不適切な概念の徹底的な消去を実現する。
論文 参考訳(メタデータ) (2024-07-17T08:04:28Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。