論文の概要: Safety Alignment Backfires: Preventing the Re-emergence of Suppressed Concepts in Fine-tuned Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2412.00357v1
- Date: Sat, 30 Nov 2024 04:37:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:06.864868
- Title: Safety Alignment Backfires: Preventing the Re-emergence of Suppressed Concepts in Fine-tuned Text-to-Image Diffusion Models
- Title(参考訳): 安全アライメントバックファイア : 微調整テキスト・画像拡散モデルにおける抑制された概念の再創出の防止
- Authors: Sanghyun Kim, Moonseok Choi, Jinwoo Shin, Juho Lee,
- Abstract要約: 微調整されたテキストと画像の拡散モデルは、必然的に安全対策を解除し、有害な概念を再現する。
本報告では,Funice-Tuning LoRAコンポーネントとは別に,安全性の低い適応モジュールをトレーニングする,Modular LoRAと呼ばれる新しいソリューションを提案する。
本手法は,新しいタスクにおけるモデルの性能を損なうことなく,有害なコンテンツの再学習を効果的に防止する。
- 参考スコア(独自算出の注目度): 57.16056181201623
- License:
- Abstract: Fine-tuning text-to-image diffusion models is widely used for personalization and adaptation for new domains. In this paper, we identify a critical vulnerability of fine-tuning: safety alignment methods designed to filter harmful content (e.g., nudity) can break down during fine-tuning, allowing previously suppressed content to resurface, even when using benign datasets. While this "fine-tuning jailbreaking" issue is known in large language models, it remains largely unexplored in text-to-image diffusion models. Our investigation reveals that standard fine-tuning can inadvertently undo safety measures, causing models to relearn harmful concepts that were previously removed and even exacerbate harmful behaviors. To address this issue, we present a novel but immediate solution called Modular LoRA, which involves training Safety Low-Rank Adaptation (LoRA) modules separately from Fine-Tuning LoRA components and merging them during inference. This method effectively prevents the re-learning of harmful content without compromising the model's performance on new tasks. Our experiments demonstrate that Modular LoRA outperforms traditional fine-tuning methods in maintaining safety alignment, offering a practical approach for enhancing the security of text-to-image diffusion models against potential attacks.
- Abstract(参考訳): 微調整テキスト・画像拡散モデルは新しい領域のパーソナライズと適応に広く用いられている。
本稿では, 有害なコンテンツ(例えばヌード)をフィルタリングする安全アライメント法は, 微調整時に分解し, 良質なデータセットを用いても, 従来抑制されていたコンテンツを再浮上させることができる。
この「微調整のジェイルブレイク」問題は、大きな言語モデルでは知られているが、テキストから画像への拡散モデルでは探索されていない。
我々の調査によると、標準的な微調整は必然的に安全対策を解き放つことができ、これまで取り除かれた有害な概念を再現し、さらに有害な振る舞いを悪化させる可能性がある。
この問題に対処するために、我々はModular LoRAと呼ばれる新しいソリューションを提案し、このソリューションは安全性の低いLoRA(LoRA)モジュールをFin-Tuning LoRAコンポーネントから別々にトレーニングし、推論中にそれらをマージする。
本手法は,新しいタスクにおけるモデルの性能を損なうことなく,有害なコンテンツの再学習を効果的に防止する。
実験の結果,Modular LoRAは安全性維持において従来の微調整法よりも優れており,テキスト・画像拡散モデルの安全性を高めるための実用的なアプローチを提供する。
関連論文リスト
- Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction [49.60774626839712]
マルチモーダル生成モデルのトレーニングは、ユーザを有害で安全でない、議論の余地のない、あるいは文化的に不適切なアウトプットに晒すことができる。
安全コンテクストの埋め込みと、より安全な画像を生成するための二重再構成プロセスを活用するモジュール型動的ソリューションを提案する。
我々は、モデル安全性の制御可能なバリエーションを提供しながら、安全な画像生成ベンチマークの最先端結果を達成する。
論文 参考訳(メタデータ) (2024-11-21T09:47:13Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
本稿では,Reliable and Efficient Concept Erasure (RECE)を提案する。
派生した埋め込みによって表現される不適切なコンテンツを緩和するために、RECEはそれらをクロスアテンション層における無害な概念と整合させる。
新たな表現埋め込みの導出と消去を反復的に行い、不適切な概念の徹底的な消去を実現する。
論文 参考訳(メタデータ) (2024-07-17T08:04:28Z) - Rethinking and Defending Protective Perturbation in Personalized Diffusion Models [21.30373461975769]
パーソナライズされた拡散モデル(PDM)の微調整過程について,ショートカット学習のレンズを用いて検討した。
PDMは小さな逆境の摂動に影響を受けやすいため、破損したデータセットを微調整すると著しく劣化する。
本稿では,データ浄化と対照的なデカップリング学習を含むシステム防衛フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-27T07:14:14Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z) - Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts [63.61248884015162]
テキストと画像の拡散モデルは、高品質なコンテンツ生成において顕著な能力を示している。
本研究では,拡散モデルの問題を自動検出するツールとして,Prompting4 Debugging (P4D)を提案する。
この結果から,従来のセーフプロンプトベンチマークの約半数は,本来 "セーフ" と考えられていたので,実際に多くのデプロイされた安全機構を回避できることがわかった。
論文 参考訳(メタデータ) (2023-09-12T11:19:36Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
テキストから画像への拡散モデルにおいて,問題のあるコンテンツ生成を防止するため,SDDと呼ばれる手法を提案する。
本手法は,画像の全体的な品質を劣化させることなく,生成した画像から有害なコンテンツをはるかに多く除去する。
論文 参考訳(メタデータ) (2023-07-12T07:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。