論文の概要: BifrostRAG: Bridging Dual Knowledge Graphs for Multi-Hop Question Answering in Construction Safety
- arxiv url: http://arxiv.org/abs/2507.13625v1
- Date: Fri, 18 Jul 2025 03:39:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.177586
- Title: BifrostRAG: Bridging Dual Knowledge Graphs for Multi-Hop Question Answering in Construction Safety
- Title(参考訳): BifrostRAG:建設安全におけるマルチホップ質問応答のための二重知識グラフのブリッジ
- Authors: Yuxin Zhang, Xi Wang, Mo Hu, Zhenyu Zhang,
- Abstract要約: 多くのコンプライアンス関連のクエリはマルチホップであり、リンクされた節間で情報を合成する必要がある。
これは、従来の検索拡張世代(RAG)システムにとっての課題である。
本稿では、言語関係と文書構造の両方を明示的にモデル化した二重グラフRAG統合システムであるBifrostRAGを紹介する。
- 参考スコア(独自算出の注目度): 11.079426930790458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information retrieval and question answering from safety regulations are essential for automated construction compliance checking but are hindered by the linguistic and structural complexity of regulatory text. Many compliance-related queries are multi-hop, requiring synthesis of information across interlinked clauses. This poses a challenge for traditional retrieval-augmented generation (RAG) systems. To overcome this, we introduce BifrostRAG: a dual-graph RAG-integrated system that explicitly models both linguistic relationships (via an Entity Network Graph) and document structure (via a Document Navigator Graph). This architecture powers a hybrid retrieval mechanism that combines graph traversal with vector-based semantic search, enabling large language models to reason over both the meaning and the structure of the text. Evaluation on a multi-hop question dataset shows that BifrostRAG achieves 92.8 percent precision, 85.5 percent recall, and an F1 score of 87.3 percent. These results significantly outperform vector-only and graph-only RAG baselines that represent current leading approaches. Error analysis further highlights the comparative advantages of our hybrid method over single-modality RAGs. These findings establish BifrostRAG as a robust knowledge engine for LLM-driven compliance checking. Its dual-graph, hybrid retrieval mechanism offers a transferable blueprint for navigating complex technical documents across knowledge-intensive engineering domains.
- Abstract(参考訳): 安全基準からの情報検索と質問応答は、自動構築コンプライアンスチェックには不可欠であるが、規制テキストの言語的・構造的複雑さによって妨げられている。
多くのコンプライアンス関連のクエリはマルチホップであり、リンクされた節間で情報を合成する必要がある。
これは、従来の検索拡張世代(RAG)システムにとっての課題である。
この問題を解決するために、BifrostRAGは、(Entity Network Graphを介して)言語関係と(Document Navigator Graphを介して)文書構造の両方を明示的にモデル化する二重グラフRAG統合システムである。
このアーキテクチャは、グラフトラバーサルとベクトルベースセマンティックサーチを組み合わせたハイブリッド検索機構を活用し、大きな言語モデルがテキストの意味と構造の両方を推論できるようにする。
マルチホップ質問データセットの評価によると、BifrostRAGの精度は92.8%、リコール率は85.5%、F1スコアは87.3%である。
これらの結果は、ベクターのみのRAGベースラインやグラフのみのRAGベースラインよりも優れており、これは現在の先進的なアプローチを表している。
誤差解析は、単一モードRAGに対するハイブリッド手法の比較上の利点をさらに強調する。
これらの結果から,BifrostRAGはLCM駆動のコンプライアンスチェックのための堅牢な知識エンジンとして確立された。
その二重グラフハイブリッド検索機構は、知識集約的なエンジニアリング領域を横断する複雑な技術ドキュメントをナビゲートするための、転送可能な青写真を提供する。
関連論文リスト
- Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval [22.33550491040999]
RAGは、大きな言語モデルを外部の証拠に基礎を置いているが、セマンティックに遠く離れた文書で答えをまとめなければならないと、いまだに混乱している。
私たちは、StatementGraphRAGとTopicGraphRAGという2つのプラグイン・アンド・プレイレトリバーを構築します。
提案手法は,検索リコールと正当性において平均23.1%の相対的改善を達成し,有意なチャンクベースRAGよりも優れていた。
論文 参考訳(メタデータ) (2025-06-09T17:58:35Z) - Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
我々は,物語文書における時間的,因果的,文字的整合性を理解するために,頑健で差別的なQAベンチマークを開発する。
次に、バイナリマッピングでリンクされたエンティティとイベントのサブグラフを分離したまま保持するデュアルグラフフレームワークであるEntity-Event RAG(E2RAG)を紹介します。
ChronoQA全体で、我々のアプローチは最先端の非構造化およびKGベースのRAGベースラインよりも優れており、因果一貫性クエリや文字整合性クエリが顕著である。
論文 参考訳(メタデータ) (2025-06-06T10:07:21Z) - ImpRAG: Retrieval-Augmented Generation with Implicit Queries [49.510101132093396]
ImpRAGは、検索と生成を統一モデルに統合するクエリフリーなRAGシステムである。
我々は、ImpRAGが、多様な形式を持つ未確認タスクの正確なマッチスコアを3.6-11.5改善したことを示す。
論文 参考訳(メタデータ) (2025-06-02T21:38:21Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [18.96570718233786]
SPLIT-RAGは、質問駆動セマンティックグラフ分割と協調サブグラフ検索による制限に対処するマルチエージェントRAGフレームワークである。
革新的なフレームワークは、まずリンク情報のセマンティック分割を作成し、次にタイプ特化知識ベースを使用してマルチエージェントRAGを実現する。
属性対応グラフセグメンテーションは、知識グラフを意味的に一貫性のあるサブグラフに分割し、サブグラフが異なるクエリタイプと整合することを保証する。
階層的なマージモジュールは、論理的検証を通じて、部分グラフ由来の解答間の矛盾を解消する。
論文 参考訳(メタデータ) (2025-05-20T06:44:34Z) - DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation [4.113142669523488]
ドメイン固有のQAシステムは、生成頻度を必要とするが、構造化専門家の知識に基づく高い事実精度を必要とする。
本稿では,マルチレベル知識グラフ構築と意味ベクトル検索を統合した,スケーラブルでカスタマイズ可能なハイブリッドQAフレームワークであるDO-RAGを提案する。
論文 参考訳(メタデータ) (2025-05-17T06:40:17Z) - HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAGは階層型マルチエージェントマルチモーダルRAGフレームワークである。
構造化、非構造化、グラフベースのデータ間での動的知識合成のための協調知能の先駆者である。
論文 参考訳(メタデータ) (2025-04-13T06:55:33Z) - CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs [9.718354494802002]
CG-RAG(Contextualized Graph Retrieval-Augmented Generation)は、グラフ構造に疎密な検索信号を統合する新しいフレームワークである。
まず、引用グラフの文脈グラフ表現を提案し、文書内および文書間の明示的および暗黙的な接続を効果的にキャプチャする。
次にLexical-Semantic Graph Retrieval(LeSeGR)を提案する。
第3に,検索したグラフ構造化情報を利用した文脈認識生成手法を提案する。
論文 参考訳(メタデータ) (2025-01-25T04:18:08Z) - SiReRAG: Indexing Similar and Related Information for Multihop Reasoning [96.60045548116584]
SiReRAGは、類似情報と関連する情報の両方を明示的に考慮する新しいRAGインデックス方式である。
SiReRAGは、3つのマルチホップデータセットの最先端インデックス手法を一貫して上回る。
論文 参考訳(メタデータ) (2024-12-09T04:56:43Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [69.01029651113386]
Embodied-RAGは、非パラメトリックメモリシステムによるエンボディエージェントのモデルを強化するフレームワークである。
コアとなるEmbodied-RAGのメモリはセマンティックフォレストとして構成され、言語記述を様々なレベルで詳細に保存する。
Embodied-RAGがRAGをロボット領域に効果的にブリッジし、250以上の説明とナビゲーションクエリをうまく処理できることを実証する。
論文 参考訳(メタデータ) (2024-09-26T21:44:11Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。