論文の概要: Localized FNO for Spatiotemporal Hemodynamic Upsampling in Aneurysm MRI
- arxiv url: http://arxiv.org/abs/2507.13789v1
- Date: Fri, 18 Jul 2025 10:00:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.251654
- Title: Localized FNO for Spatiotemporal Hemodynamic Upsampling in Aneurysm MRI
- Title(参考訳): Aneurysm MRIにおける時空間血行動態アップサンプリングのための局所FNO
- Authors: Kyriakos Flouris, Moritz Halter, Yolanne Y. R. Lee, Samuel Castonguay, Luuk Jacobs, Pietro Dirix, Jonathan Nestmann, Sebastian Kozerke, Ender Konukoglu,
- Abstract要約: Localized Operator (LoFNO) は空間分解能と時間分解能を両立させる新しい3Dアーキテクチャである。
LoFNOは臨床画像データから直接壁せん断応力を予測する。
- 参考スコア(独自算出の注目度): 7.787686784329426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hemodynamic analysis is essential for predicting aneurysm rupture and guiding treatment. While magnetic resonance flow imaging enables time-resolved volumetric blood velocity measurements, its low spatiotemporal resolution and signal-to-noise ratio limit its diagnostic utility. To address this, we propose the Localized Fourier Neural Operator (LoFNO), a novel 3D architecture that enhances both spatial and temporal resolution with the ability to predict wall shear stress (WSS) directly from clinical imaging data. LoFNO integrates Laplacian eigenvectors as geometric priors for improved structural awareness on irregular, unseen geometries and employs an Enhanced Deep Super-Resolution Network (EDSR) layer for robust upsampling. By combining geometric priors with neural operator frameworks, LoFNO de-noises and spatiotemporally upsamples flow data, achieving superior velocity and WSS predictions compared to interpolation and alternative deep learning methods, enabling more precise cerebrovascular diagnostics.
- Abstract(参考訳): 血行動態解析は動脈瘤破裂とガイド治療の予測に不可欠である。
磁気共鳴フローイメージングは、時間分解された体積速度の測定を可能にするが、その低時空間分解能と信号対雑音比は診断上の有用性を制限している。
そこで我々は,臨床画像データから直接壁面せん断応力(WSS)を予測する機能を備えた,空間分解能と時間分解能を両立させる新しい3DアーキテクチャであるLoFNOを提案する。
LoFNOはラプラシアン固有ベクトルを不規則で目に見えない測地の構造的認識を改善するための幾何学的先行要素として統合し、堅牢なアップサンプリングのために強化された深層超解ネットワーク(EDSR)層を用いる。
幾何的先行とニューラルオペレーターのフレームワークを組み合わせることで、LoFNOは時空間的な流れデータを分解し、補間や代替の深層学習法よりも優れた速度とWSS予測を実現し、より正確な脳血管診断を可能にする。
関連論文リスト
- Towards a general-purpose foundation model for fMRI analysis [58.06455456423138]
我々は,4次元fMRIボリュームから学習し,多様なアプリケーション間で効率的な知識伝達を可能にするフレームワークであるNeuroSTORMを紹介する。
NeuroSTORMは、複数のセンターにまたがる5万人以上の被験者から5歳から100歳までの28.65万fMRIフレーム(→9000時間)で事前トレーニングされている。
年齢/性別予測、表現型予測、疾患診断、fMRI-to-image検索、タスクベースのfMRIの5つのタスクにおいて、既存の手法よりも優れています。
論文 参考訳(メタデータ) (2025-06-11T23:51:01Z) - Input layer regularization and automated regularization hyperparameter tuning for myelin water estimation using deep learning [1.9594393134885413]
そこで本研究では,脳内ミエリン水分率(MWF)を2次解析により推定する手法として,古典的正規化とデータ拡張を組み合わせた新しいディープラーニング手法を提案する。
特に,MWF推定に使用される信号モデルの1つである双指数モデルについて検討する。
論文 参考訳(メタデータ) (2025-01-30T00:56:28Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Temporal Dynamic Synchronous Functional Brain Network for Schizophrenia
Diagnosis and Lateralization Analysis [8.280225660612862]
この研究はCOBREとUCLAのデータセットで検証され、平均精度は83.62%と89.71%に達した。
興味深いことに、左半球の低次知覚系と高次ネットワーク領域は、SZの右半球よりも深刻な機能障害であることがわかった。
論文 参考訳(メタデータ) (2023-03-31T02:54:01Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
複雑な合成血管形状の高分解能(空間および時間)速度場を予測できるアーキテクチャを提案する。
CFDシミュレーションと比較して、速度場は平均絶対誤差0.024m/sで推定できるのに対し、実行時間は高性能クラスタでは数時間からコンシューマグラフィカル処理ユニットでは数秒に短縮される。
論文 参考訳(メタデータ) (2023-02-13T17:56:00Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Physics-informed neural networks for improving cerebral hemodynamics
predictions [0.0]
本研究では,高速計算流体力学シミュレーションを用いて,スパースな臨床測定を増強する物理インフォームド・ディープラーニング・フレームワークを提案する。
本フレームワークでは,脳内数箇所のリアルタイムTD速度測定と,3次元画像から取得した基線血管断面領域を用いた。
4次元MRIで得られた生体内速度測定に対して,本モデルの有効性を検証した。
論文 参考訳(メタデータ) (2021-08-25T22:19:41Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Towards learned optimal q-space sampling in diffusion MRI [1.5640063295947522]
ファイバトラクトグラフィーのための統一的な推定フレームワークを提案する。
提案手法は,信号推定の精度とそれに続く解析精度を大幅に向上させる。
本稿では,Human Connectome Projectデータに基づく包括的比較分析を提案する。
論文 参考訳(メタデータ) (2020-09-07T10:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。