DUALRec: A Hybrid Sequential and Language Model Framework for Context-Aware Movie Recommendation
- URL: http://arxiv.org/abs/2507.13957v1
- Date: Fri, 18 Jul 2025 14:22:05 GMT
- Title: DUALRec: A Hybrid Sequential and Language Model Framework for Context-Aware Movie Recommendation
- Authors: Yitong Li, Raoul Grasman,
- Abstract summary: Large Language Models (LLMs) have gained gradual attention in recent years, by their strong semantic understanding and reasoning abilities.<n>We proposeRec (Dynamic User-Aware Language-based Recommender), which combines the temporal modelling abilities of LSTM networks with semantic reasoning power of the fine-tuned Large Language Models.
- Score: 6.850757447639822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modern recommender systems are facing an increasing challenge of modelling and predicting the dynamic and context-rich user preferences. Traditional collaborative filtering and content-based methods often struggle to capture the temporal patternings and evolving user intentions. While Large Language Models (LLMs) have gained gradual attention in recent years, by their strong semantic understanding and reasoning abilities, they are not inherently designed to model chronologically evolving user preference and intentions. On the other hand, for sequential models like LSTM (Long-Short-Term-Memory) which is good at capturing the temporal dynamics of user behaviour and evolving user preference over time, but still lacks a rich semantic understanding for comprehensive recommendation generation. In this study, we propose DUALRec (Dynamic User-Aware Language-based Recommender), a novel recommender that leverages the complementary strength of both models, which combines the temporal modelling abilities of LSTM networks with semantic reasoning power of the fine-tuned Large Language Models. The LSTM component will capture users evolving preference through their viewing history, while the fine-tuned LLM variants will leverage these temporal user insights to generate next movies that users might enjoy. Experimental results on MovieLens-1M dataset shows that the DUALRec model outperforms a wide range of baseline models, with comprehensive evaluation matrices of Hit Rate (HR@k), Normalized Discounted Cumulative Gain (NDCG@k), and genre similarity metrics. This research proposes a novel architecture that bridges the gap between temporal sequence modeling and semantic reasoning, and offers a promising direction for developing more intelligent and context-aware recommenders.
Related papers
- ConceptMix++: Leveling the Playing Field in Text-to-Image Benchmarking via Iterative Prompt Optimization [20.935028961216325]
ConceptMix++ is a framework that disentangles prompt phrasing from visual generation capabilities.<n>We show that optimized prompts significantly improve compositional generation performance.<n>These findings demonstrate that rigid benchmarking approaches may significantly underrepresent true model capabilities.
arXiv Detail & Related papers (2025-07-04T03:27:04Z) - OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment [9.99840965933561]
We propose OneRec, which replaces the cascaded learning framework with a unified generative model.<n>OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in.
arXiv Detail & Related papers (2025-02-26T09:25:10Z) - Latent Thought Models with Variational Bayes Inference-Time Computation [52.63299874322121]
Latent Thought Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.<n>LTMs demonstrate superior sample and parameter efficiency compared to autoregressive models and discrete diffusion models.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Enhancing User Intent for Recommendation Systems via Large Language Models [0.0]
DUIP is a novel framework that combines LSTM networks with Large Language Models (LLMs) to dynamically capture user intent and generate personalized item recommendations.<n>Our findings suggest that DUIP is a promising approach for next-generation recommendation systems, with potential for further improvements in cross-modal recommendations and scalability.
arXiv Detail & Related papers (2025-01-18T20:35:03Z) - LLM-based Bi-level Multi-interest Learning Framework for Sequential Recommendation [54.396000434574454]
We propose a novel multi-interest SR framework combining implicit behavioral and explicit semantic perspectives.<n>It includes two modules: the Implicit Behavioral Interest Module and the Explicit Semantic Interest Module.<n>Experiments on four real-world datasets validate the framework's effectiveness and practicality.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Dual Contrastive Transformer for Hierarchical Preference Modeling in Sequential Recommendation [23.055217651991537]
Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users.
Most of existing SRSs often model users' single low-level preference based on item ID information.
We propose a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics.
arXiv Detail & Related papers (2024-10-30T08:09:33Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Modeling User Behaviour in Research Paper Recommendation System [8.980876474818153]
A user intention model is proposed based on deep sequential topic analysis.
The model predicts a user's intention in terms of the topic of interest.
The proposed approach introduces a new road map to model a user activity suitable for the design of a research paper recommendation system.
arXiv Detail & Related papers (2021-07-16T11:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.