Automatic Classification and Segmentation of Tunnel Cracks Based on Deep Learning and Visual Explanations
- URL: http://arxiv.org/abs/2507.14010v1
- Date: Fri, 18 Jul 2025 15:21:02 GMT
- Title: Automatic Classification and Segmentation of Tunnel Cracks Based on Deep Learning and Visual Explanations
- Authors: Yong Feng, Xiaolei Zhang, Shijin Feng, Yong Zhao, Yihan Chen,
- Abstract summary: This study aims to classify and segment tunnel cracks with enhanced accuracy and efficiency.<n>An automatic tunnel image classification model is developed using the DenseNet-169 in the first step.<n>The proposed crack segmentation model in the second step is based on the DeepLabV3+.
- Score: 9.2814977996391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tunnel lining crack is a crucial indicator of tunnels' safety status. Aiming to classify and segment tunnel cracks with enhanced accuracy and efficiency, this study proposes a two-step deep learning-based method. An automatic tunnel image classification model is developed using the DenseNet-169 in the first step. The proposed crack segmentation model in the second step is based on the DeepLabV3+, whose internal logic is evaluated via a score-weighted visual explanation technique. Proposed method combines tunnel image classification and segmentation together, so that the selected images containing cracks from the first step are segmented in the second step to improve the detection accuracy and efficiency. The superior performances of the two-step method are validated by experiments. The results show that the accuracy and frames per second (FPS) of the tunnel crack classification model are 92.23% and 39.80, respectively, which are higher than other convolutional neural networks (CNN) based and Transformer based models. Also, the intersection over union (IoU) and F1 score of the tunnel crack segmentation model are 57.01% and 67.44%, respectively, outperforming other state-of-the-art models. Moreover, the provided visual explanations in this study are conducive to understanding the "black box" of deep learning-based models. The developed two-stage deep learning-based method integrating visual explanations provides a basis for fast and accurate quantitative assessment of tunnel health status.
Related papers
- Deep Learning-Based Fatigue Cracks Detection in Bridge Girders using Feature Pyramid Networks [8.59780173800845]
This study proposes a framework of automatic crack segmentation from high-resolution images containing crack information about steel box girders of bridges.
Considering the multi-scale feature of cracks, convolutional neural network architecture of Feature Pyramid Networks (FPN) for crack detection is proposed.
arXiv Detail & Related papers (2024-10-28T16:16:15Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and
Authentication [50.017055360261665]
We introduce DiffVein, a unified diffusion model-based framework which simultaneously addresses vein segmentation and authentication tasks.
For better feature interaction between these two branches, we introduce two specialized modules.
In this way, our framework allows for a dynamic interplay between diffusion and segmentation embeddings.
arXiv Detail & Related papers (2024-02-03T06:49:42Z) - Dual flow fusion model for concrete surface crack segmentation [0.0]
Cracks and other damages pose a significant threat to the safe operation of transportation infrastructure.
Deep learning models have been widely applied to practical visual segmentation tasks.
This paper proposes a crack segmentation model based on the fusion of dual streams.
arXiv Detail & Related papers (2023-05-09T02:35:58Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
Deep learning has produced encouraging results for kidney stone classification using endoscope images.
The shortage of annotated training data poses a severe problem in improving the performance and generalization ability of the trained model.
We propose SegPrompt to alleviate the data shortage problems by exploiting segmentation maps from two aspects.
arXiv Detail & Related papers (2023-03-15T01:30:48Z) - Evaluation and Comparison of Deep Learning Methods for Pavement Crack
Identification with Visual Images [0.0]
pavement crack identification with visual images via deep learning algorithms has the advantages of not being limited by the material of object to be detected.
In the aspect of patch sample classification, the fine-tuned TL models can be equivalent to or even slightly better than the ED models in accuracy.
In the aspect of accurate crack location, both ED and GAN algorithms can achieve pixel-level segmentation and is expected to be detected in real time on low computing power platform.
arXiv Detail & Related papers (2021-12-20T08:23:43Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection [5.735035463793008]
Drone imagery is increasingly used in automated inspection for infrastructure surface defects.
This paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation.
The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements.
arXiv Detail & Related papers (2021-04-21T13:07:58Z) - Advances in deep learning methods for pavement surface crack detection
and identification with visible light visual images [0.0]
Compared to NDT and health monitoring method for cracks in engineering structures, surface crack detection or identification based on visible light images is non-contact.
This paper comprehensively summarizes the pavement crack public data sets, and the performance and effectiveness of surface crack detection and identification deep learning methods for embedded platform.
arXiv Detail & Related papers (2020-12-29T11:10:12Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.